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The recently formulated completely renormalized coupled-cluster method with singles, doubles, and noniterative
triples, exploiting the biorthogonal form of the method of moments of coupled-cluster equations (Piecuch, P.;
Wioch, M. J. Chem. Phys2005 123 224105; Piecuch, P.; Wioch, M.; Gour, J. R.; Kinal, Bhem. Phys.

Lett. 2006 418 467), termed CR-CC(2,3), is extended to open-shell systems. Test calculations for bond
breaking in the OH radical and thé fon and singlettriplet gaps in the Ck HHeH, and (HFH) biradical
systems indicate that the CR-CC(2,3) approach employing the restricted open-shell HaotkdROHF)
reference is significantly more accurate than the widely used CCSD(T) method and other noniterative triples
coupled-cluster approximations without making the calculations substantially more expensive. A few molecular
examples, including the activation energies of thel+ H — C;Hs forward and reverse reactions and the
triplet states of the Ciand HSi,O, biradicals, are used to show that the dependence of the ROHF-based
CR-CC(2,3) energies on the method of canonicalization of the ROHF orbitals is, for all practical purposes,
negligible.

I. Introduction There is, however, one major problem with the CCSD(T)

Coupled-cluster (CC) theoty® has become one of the most and similar single-reference CC methods; namely, all of these
important techniques of contemporary quantum chemistry. The Methods fail or become very inaccurate when biradicals, bond
method that often symbolizes the success of CC theory is thePréaking, and other situations involving large nondynamical
widely used CCSD(T) approach (CC approach with singles, correlatlon effepjts are examined (cf., e.g., refs 17 and 19.for
doubles, and noniterative triple& which the noniterative (T) ~ '€views). Traditionally, the adequate treatment of reaction
correction due to triply excited clusters is added to the CCSD Pathways involving bond breaking and other cases of electronic

(CC singles and doublésf energy. The CCSD(T) method quasi-degeneracies has been the domain of expert multireference
which from the technical point of view can be regarded as a methods, and a great deal of progress has been achieved in the

straightforward modification of the earlier CCSBT(CCSD) area of multireference calculations over the years. Unfortunately,
— CCSDJ[T] approach®!Loffers several appealing features that €VeN the most successful multireference approaches are not
contribute to its popularity. First of all, CCSD(T) is a single- without limitations. For example, the low-order multireference
reference (meaning black-box) approach that can easily be usederturbation theory methods (cf., e.g., refs 24, 25, and references
by experts as well as nonexperts. Second of all, CCSD(T) therein), such as CASPP2,22may encounter severe difficulties
provides a size extensive and accurate description of theWith balancing dynamical and nondynamical correlations in
nondegenerate ground states of molecular systems with theStudies of reaction pathways and relative energetics of systems
computer costs that can be characterized as relatively low, characterized by a varying degree of biradical chard€tef,
considering the resulting accuraci@s® These costs are defined ~ While the more robust multireference configuration interaction
by the iterative steps of the underlying CCSD calculation that (MRCI) approaches, including the successful and widely used
scale asi,2n* and the noniterativesn, steps that are needed  internally contracted MRCI approach with quasi-degenerate
to determine the (T) energy correction, whegandn, are the ~ Davidson corrections (the MRCI(Q) meti6d), are often
numbers of occupied and unoccupied orbitals, respectively, thatProhibitively expensive and lack size extensivity. (CASPT2 is
are included in the correlated calculations. Thanks to these NOt Size extensive eithéf) One should also keep in mind that
relatively low costs and advances in computer architectures, the@ll multireference theories require a great deal of expertise and
CCSD(T) approach can nowadays be routinely applied to €XPerience, because the user of such methods has to specify a
molecular systems with up to about 100 correlated electrons Number of additional parameters that do not enter single-refer-
and a few hundred basis functions when a canonical formulation €Nce calculations, such as active orbitals or multiple reference

of CCSD(T) is used and hundreds of correlated electrons anddeterminants and, particularly in the case of MRCI, numerical
over 1000 basis functions when the local correlation form&fism ~ thresholds for neglecting the less important electron configura-
is exploited?23 tions that all affect the results, in addition to the appropriate
choice of the basis set that enters all quantum chemistry
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tions. This has been the motivation behind the recent develop-CCSD(T) type. As shown in refs 668, when canonical
ment of the noniterative CC approaches based on the partition-Hartree-Fock orbitals are employed, CCSD{23$ also equiva-
ing of the similarity-transformed Hamiltonian pursued by lent to what we refer to as variant A of the CR-CC(2,3)
Head-Gordon and co-workéfs*! (see ref 42 for the original ~ approach, in which the diagonal matrix elements of the

idea), adopted in a slightly modified form by Hirata et“4l** similarity-transformed Hamiltonian of CCSD involving triply
and commonly labeled as the CCSD(2) approximations, the excited determinants, which enter the CR-CC(2,3) triples
spin-flip CC methods of Krylov and co-worket%;%” the correction, are replaced by the orbital energy differences

iterative and noniterative methdd494041.4851 hased on the  characterizing triple excitations. The triples correction of the
extended CC theories of Arponen and Bistfop? and Piecuch CCSD(2) method of refs 37 and 39 is, up to small details,
and Bartlett® and the renormalized and other CC ap- equivalent to variant B of the CR-CC(2,3) approach, which is
proaches based on the method of moments of CC equationsyet another approximation to the full CR-CC(2,3) method
(MMCC).17-19,5051,66.76 discussed in section 11B. As demonstrated in this paper, the full
In this paper, we focus on the renormalized CC methods for CR-CC(2,3) approach is more accurate than its approximate
ground electronic statég; 19:5051,66:62,65-68,74.76yyhich represent forms represented by variants A and B.
a new generation of noniterative single-reference CC approaches The successes of the CR-CC(2,3) method in applications
that are designed to improve the performance of CCSD(T) and involving single bond breaking and biradical structures on singlet
similar methods in the bond-breaking/biradical regions of potential energy surfac&s?133.6668.76.77prompt the question of
molecular potential energy surfaces, while preserving the easewhether CR-CC(2,3) can be similarly effective in calculations
of use, the relatively low computer costs, and the general involving open-shell systems. The open-shell problems that are
philosophy of the CCSD(T) approach. Among the most promis- of particular interest to us are bond breaking in radicals and
ing developments in this area is the recently propésé8iCR- doublet ground states in general as well as singlgtlet energy
CC(2,3) approach, in which, in analogy to CCSD(T), a gaps in biradical systems. To be more specific, we would like
noniterative correction due to triply excited clusters is added to to know if the CR-CC(2,3) approach can provide improvements
the CCSD energy. On the basis of the initial benchmark in the CCSD(T), CR-CCSD(T), and CCSD{2)esults in
studie§5-%8 and several applicatior831:33.67.76.71n which CR- calculations for radicals and singtetriplet gaps in biradicals.
CC(2,3) was used to study bond-breaking and reaction pathwaysThis paper represents our first attempt to address this question
on singlet potential energy surfaces, particularly those involving by testing the recently developed, highly efficient, general-
biradical species, the CR-CC(2,3) method offers the following purpose CR-CC(2,3) computer code for nonsinglet electronic
advantages: (i) is as accurate as CCSD(T) for nondegeneratestates, which we overview in this paper and which will be
ground states, (i) provides accurate results of the full CCSDT described in further detail elsewhefeon a few molecular ex-
(CC singles, doubles, and triplé}° quality for single bond amples, namely, bond breaking in the OH radical and the chal-
breaking on singlet potential energy surfaces and biradicals with lenging F ion, and singlettriplet energy gaps in the GH
the relatively inexpensiven,3n,* steps similar to those of HHeH, and (HFHJ biradicals. The OH radical is a prototype
CCSD(T), (iii) is more accurate than the original variant of the of many radical species encountered in various areas of chem-
completely renormalized (CR) CCSD(T) theory, termed CR- istry, whereas F is known to pose very interesting and chal-
CCSD(T)17-1960-62 jts newer locally renormalized (LR) LR-  lenging problems to single-reference meth&&: 8 Methylene
CCSD(T) extensiof? and the CCSD(2)approach of ref 44, represents a classic case of a small gap between the first excited
which all aim at improving the performance of CCSD(T) in singlet state and the triplet ground s#té® that can cause
the biradical/bond breaking situations, and (iv) is rigorously size serious difficulties for many electronic structure methods and
extensive without the need to localize orbitals as in the LR- that normally requires an MRE&®* or multireference CC
CCSD(T) case (LR-CCSD(T) becomes size extensive only when (MRCC)*>~%7 treatment or the use of expensive high-order
the orbitals used in the calculations are properly localized on iterative single-reference CC methods, such as CC%3to
the fragment$® otherwise, LR-CCSD(T) is characterized by obtain an accurate description. The HHeH system has been used
small inextensivity errors, on the order of 0.5% of the changes to demonstrate the effectiveness of the density matrix renor-
in the total correlation energy along a reaction pathway, similar malization group approa€h'®in handling singlet triplet gaps
to those present in the CR-CCSD(T) calculatidifg. The in magnetic system®! where other methods, including, for
CR-CC(2,3) approximation belongs to a wider class of the CR- example, QCISD(T) (quadratic Cl with singles, doubles, and
CC(ma,me) approaches, all derived from the biorthogonal noniterative tripledand a number of density functional theory
formulation of the MMCC theory discussed in refs 66 and 67 approaches have serious difficulties with balancing many-
(cf. refs 75 and 76 for reviews), that are labeled by the excitation electron correlation effects in the close-lying singlet and triplet
level ma, defining the CC method that we want to correct, and States®®21%3The (HFH) system is in the same category as the
the excitation levelns, defining the noniterative correction to  HHeH system. (HFH) represents another example of a chal-
CC energy. Let us also recall that the CR-CCSD(T) approach lenging biradical/magnetic system, where the two paramagnetic
is the lead CR-CC approximation based on the original centers, each containing an unpaired spin, are linked via a
formulation of the MMCC theof§P:61.70(cf. refs 17-19 and 74 diamagnetic bridge. The additional challenge that (HFH)
76 for reviews), whereas LR-CCSD(T) is the noniterative triples creates to standard single-reference methods, compared to
CR-CC approximation resulting from the so-called numerator HHeH, is the presence of a polarizable diamagnetic entity in
denominator-connected form of the MMCC formali&hiThe the centet?? which also has a larger number of electrons
CCSD(2) approach of ref 44 is obtained by ignoring the Ccompared to a two-electron He atom.
contributions due to quadruply excited clusters in the At this time, the open-shell CR-CC(2,3) code used in this
CCSD(2) method of ref 43, reducing larger costs of the work has been interfaced with the restricted open-shell Hattree
CCSD(2) calculations, which, depending on the details of the Fock (ROHF) and integral routines available in the GAMESS
computer implementation, ang® (refs 37 and 39) ony*n,° (refs package® It will become part of the official GAMESS
43 and 44), to the much more practiaaPn,* steps of the distribution in the near future. The benchmark calculations
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reported in this work are also used as an opportunity to review is the similarity-transformed Hamiltonian of the CCSD method,
the theoretical concepts behind the CR-CC(2,3) approach andwith
the most essential characteristics of our newly developed open- _
shell CR-CC(2,3) code. In particular, by analyzing the activation T, = z t,a%a (6)
energies for the ¢4, + H — C,Hs forward and reverse [
reactions, which proceed on a doublet potential energy sur-
facel® and triplet states of the GHand HSi,O, (ref 106) and
biradicals, we demonstrate that the dependence of the ROHF-
based CR-CC(2,3) energies on the method of canonicalization T,= Z tgbaaaba‘-ai (7)
of the ROHF orbitals is, for all practical purposes, negligible.
a<b

Il. Theory and Computational Details representing the singly and doubly excited cluster operators,

The CR-CC(2,3) method and the underlying biorthogonal respectively, and the subscript C designates the connected part

MMCC formalism represent relatively new developments. Thus of the corresponding operator expression. To guarantee that eq

. . . . . 2 represents the exact difference between the full Cl and CCSD
we begin our discussion with the key elements of the bior energies, eq 1, one must require that the full Cl bra s,

thogonal MMCC theory that are relevant for designing the triples eq 4, is normalized as
correction to the CCSD energy defining the CR-CC(2,3) '
approach (section IIA). The most essential equations of the CR- Wy |1P(CCSD)D= 1
CC(2,3) method are discussed in section IIB, and the remaining U
algorithmic and computational details that are particularly

relevant to the open-shell CR-CC(2,3) code used in this work
are described in section IIC.

A. Synopsis of the Biorthogonal MMCC Formalism for
Ground Electronic States.As in the case of the original CR-
CCSD(T) method/~19.60-62 the CR-CC(2,3) approximation
discussed in this work is derived from the rigorous formula for
the noniterative correctiody, which, when added to the ground-
state energy obtained in the conventional CC calculations, such
as CCSD, recovers the corresponding exact, i.e., full Cl, ground-

8)

where |WECSP= eNitT|dLis the CCSD wave function. In
the above equations and elsewhere in this article, we use the
usual notation wherg,, iy, ... ori, j, ... are the spin-orbitals
occupied in the reference determing®t’anday, ay, ... ora, b,
... are the unoccupied spin-orbitals. Take(a,) operators are
the creation (annihilation) operators associated with the spin-
orbitals |pL]

The de-excitation operatoy; parametrizing the exact bra
ground statéWy| according to eq 4, is defined as

state energyEo. If we aim at correcting the CCSD energy N
E{CCSP) which is what one does in the CR-CC(2,3) calcula- =S (9)
tions, the relevant expression for n=
whereN is the number of electrons in the system and
8, = E, — ELCCSD) 1) Y
7= /i glieendlrg o (10)
resulting from the application of the biorthogonal MMCC i1<Z<|n " T
formalism of refs 66 and 67 to the Hamiltonian with pairwise &= san
interactions Is are then-body components of” Formally, the/f::i" ampli-
6 tudes defining the exact operatgtand, through eq 4 the full
_ .2 /.1 in Cl bra ground statéW,| can be obtained by solving the bra
0o = r; Il;q livi (2) 2) eigenvalue problef§67 (cf. also refs 75 and 76)
Q<=ccr<ap
@]/ HOP = E, @]/ (11)
where o ] o )
which is equivalent to the adjoint form of the St¢Hnager
f/'l in (2) — @ a"|H(CCSDﬂ<I>D 3) equation[Wo|H = Eo[Wo|, in the entireN-electron Hilbert space.

It is interesting to note though that the noniterative correction
0e%P) eq 2, is defined in terms of thebody components of
are the generalized moments of the CCSD equations, defined/ with n > 2. These components originate from the decomposi-
as projections of the CCSD equations on the excited determi-tion of the operator/into the sum of the CCSD part

nants|<1>al a”D— atie--atng; -++a;,| P with n > 2, that are

Iy

normally dlsregarded in the CCSD calculations, and the coef- ,/‘CCSD)=,X6 +4+0 (12)
ficients /al 2 are the amplitudes defining the de-excitation _
operator/, which parametrizes the full Cl bra ground stai&) and the remainder term
via the formula N
6"'/)(CCSD): Z»j‘/) (13)
Wl = [ /e 7 4) &’
The operator ;I'ohe normalization condition defined by eq 8 is then equivalent
H(CCSD)_ —T1— T2 He Tt+To (H eT1+T2) (5) @L‘W(CCSD%I)D: 1 (14)
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so that the zero-body component and A, components ofL(CCSP), Further details of the CR-
. CC(2,3) approach are discussed next.
%=1 (15) B. CR-CC(2,3) Method. In the CR-CC(2,3) method of refs

) ) 66—68, which belongs to a larger family of the MMQ&{,mg) ~
wherelis a unit operator. It should also be noted that although and CR-CCffw,ms) approximations resulting from the bior-
the exact/{ amplitudes originate from solving the left  thogonal MMCC theor$®-637576we correct the results of the

. 1n . . .
eigenvalue problem for®|in the entireN-electron Hilbert CCSD calculations by adding the triples correction
space, eq 11, we do not have to use all many-body components

/awith n > 2 to construct the exact energy correctitffi°®) 04(2,3)= z /2% 17k (2) (20)
eq 2. We only need to know the componepwith n = 3—6, i 4=k :
independent of the number of electrons in a system. This a<b<c

interesting feature of the biorthogonal MMCC formalism of refs (ccsD) ) i
66 and 67, which distinguishes it from the origi¥ef-7%and 10 the CCSD energf, ™. The correctiomo(2,3), eq 20, is
numerator-denominator-connectétd MMCC energy expan- ~ obtained by considering the lead= 3, term in eq 2 and by
sions, is a consequence of the fact that for Hamiltonians with N€glecting the remaining > 3 contributions that describe the
pairwise interactions, as used in quantum chemistry, the effef:tsloég'gggrs'g?_lf‘)'t”ply exdc%teg %ﬁtﬁzs' In lana|09y t? the
eneralized moments of the CCSD equatior&-' (2), eq 3, oniginal L - ) approact, = € only moments
\?vith n > 6 vanish. They also vanish f?urz 1ma/§‘hla (, z)ec?ause of the (.ZCSD equations thiz_'it are ngeded in the CR-CC(2,3)
the ground-state CCSD equations that are used to determineFalculations are moments/ ;. (2), which correspond to pro-
the corresponding; and T, clusters are obtained by zeroing J&ctions of the CCSD equations on trlply excited det_ermlnants.
moments,,//i;‘“ign(Z) with n = 1 or 2. This is why the range of We can calculate these moments using the following expres-
»

i 9
n values in the definition of the exact correctié[fCSD), eq 2, siort
isn = 3-6. L iy . ik ab 1.2, 1>
Because of the normalization condition given by eq 15, the ./ 3,d2) = @)ijkC“H(TZ T+ ST 5T T+
CCSD part of the operataf, defined by eq 12, is similar to the 1 1
de-excitation operator > T,T,. + 5 T13T2)]C‘QDD (21)
(CCSD) _ (CCsD)
L =1+A (16) We refer the reader to refs 73 and 75 for the factorized,
which defines the bra or left CCSD st (C°SP) = [@|L(CCSD) computationally efficient expression for/’ g'f)c(Z) in terms of
e Ti-T.. that matches the ket CCSD grgund StATCCSO= the singly and doubly excited cluster amplitud€sand t},

T DLF9107 The operatorA(€CSD) in eq 16 is the standard respectively, and molecular integrals defining the Hamiltonian

“ambda” tor of th IVt dient CCSD thedaj 108 in the second quantized form. The highly efficient, fully
ambdaoperator of the analytic gradien y vectorized, open-shell implementation of the CR-CC(2,3) ap-

(ccsp) proach tested in this work is based on integrating the spin-orbital
A A+ A, a7) . ) . .
expressions for.// % (2) and the corresponding recursively
where generated intermediates over the relevant spin variables. (Further
technical details will be provided in a separate pafer.
A= Z Ada, (18) The/f}‘,‘fC amplitudes entering the CR-CC(2,3) triples correc-
| tion 80(2,3), eq 20, are determined as foll§fr$8.75.76
a
and / ;Ec — @|A(CCSD)F|(CCSD)| (I)?I?CUDEBC
A=y 2jadaga, (19) = [@|[(AHTP) e + (AHC) e +
ach (AHE) | @ UDY, (22)

are the corresponding one- and two-body components obtaineq,\,h(_.‘.re/\l andA. are the one- and two-body components of the
by solving the left ground-state eigenvalue problem involving «3mpda” operator ACCSD) of the analytic gradient CCSD

H(CCSD) similar to eq 11, in whichyis replaced by (€cSD) eq theory1213.1083nd
16, andE, by ES“*®in the subspace of the-electron Hilbert
space spanned by the reference determiftafiand the singly D”‘,; = EgCCSD)_ E‘I)?-‘E°|I:|(CCSD)|®-‘"-‘E°D
and doubly excited determinantQ?DandKDﬁ‘bD respectively. e ! !
There obviously is a difference between the CCSD part of the = @E‘EﬂH(lCCSD} d)ﬁ,'(”[]— DI);‘E“|I:|(2CCSD)|<D;‘E°D—
exact operatar;, 7 (CCSD) eq 12, which is obtained by solving abg, [j(CCSD) . ab

. . : [@3Y RSP PP (23)
eq 11 in the entiré-electron Hilbert space, andccsP), eq 16, ijk 1713 ijk
obtained by solving a similar equation in the subspace spanned —(CCSD) THECSD) — ccsp)
by |0 |7L) and|f°C(ct., e.g., refs 66, 67, 75, and 76 fora Where Hi ™=, Hy;™7, and H;™™" are the one-, two-, and
discussion). However, the operatgféccsD) eq 12, and.(CCSD), three-body components of the similarity-transformed Hamilto-
eq 16, have enough in common for formulating useful ap- Nian HSP) of the CCSD theory, eq 5, and the subscript DC
proximate schemes based on the biorthogonal MMCC formal- designates the disconnected part of the corresponding operator
ism, such as CR-CC(2,3), in which the three-body component Product. The final formula for the ground-state CR-CC(2,3)
of /that defines the leady = 3, term in the noniterative  €Nergy IS
correctiondCP) eq 2, is related to the corresponding one- CR_CC(23 ccso
and two-body componentg; and /%, approximated by thé; Eg @3 = E(() )+ 00(2,3) (24)
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where the triples correctiofy(2,3) is defined by eq 20, with  three-body term in eq 23, and variant B is obtained by ignoring

/% 42) and/§° given by eqgs 21 and 22, respectively. the last two terms, leaving the one-body contributiefib;,

As explained in refs 66 and 67 (cf. also refs 75 and 76), eq H(ICCSD{¢§E°|] in DX _only. Finally, variant A of the CR-

. . . .. 5 abc
22 can be derived by considering the bra form of the similarity- CC(2,3) approach is obtained by replacing the denominator

transformed Schidinger equation, eq 11, which we right-project p* "eq 23, by the MgllerPlesset-like denominator for triple

on the triply excited determinant@f}‘ECDto obtain excitations, ¢ + ¢ + ex — €a — e — €c), Whereep's are the
(CCSD) pab abe spin-orbital energies (diagonal elements of the Fock matrix).
@ /H WCDUKCDZ Eo /i (25) Numerically, variant A is often not much different than variant

o B. This is related to the fact that the denomina®f, used in
Based on the similarity between the CCSD part of the operator 1, CR-CC(2,3),B approximation has the fom@abclﬁ(l(:CSD)

/) i.e. /(CCSD) eq 12, and the de-excitation operatd?CsP) abc—_ K 4 ki o FK . Fa_ pb_ Re Lk b
eq 16, defining the left CCSD state, discussed in section IIA [P D= b + Iy + hy = b — b, — h where, in generahy's

i
. 8 ' are matrix elements defining the second quantized form of the
we approximate the exact operatof’ in eq 25 by 1 9 q
+ A(CCSD)+ 7 We also replace the exact enefyin eq 25

one-body component df(©csD) H{*®S?) = 5 hfaPa, The
- . _p
by the CCSD energ;EgCCSD). This leads to the following diagonal matrix elemgntbp can be re.gardt_ad.as the d.ressed
. be . forms of the usual spin-orbital energies Similarly, variant
system of equations for th@k amplitude$s-67

C, in which the [@{IH P\ contribution to D is

E(CCSD) abe _ [@p e | (CCSD) gyaberz def neglected, is, in most cases, not much different than the complete
0 oL Bk = mn variant D, because the three-bod@IHS > @f terms
dexf - are often not very important (the two-bo@®;HS ) @50
[@|ACCSPHECS) 920 (26) terms are). Although variant C may, on occasion, be slightly

more accurate than the full variant D, variant D using the most
The desired eq 22 is obtained by approximating the triples complete, EpsteinNesbet-like form of the denominat@‘;'gc,
triples block of the matrix representirtg(©“SP in the second  eq 23, is generally the most robust one when compared to the
term on the left-hand side of eq 26 by its diagonal p&#t. other variants. This can be understood if we realize that eq 23

Before discussing different variants of the CR-CC(2,3) for Dg‘gc defining the CR-CC(2,3),D approach is obtained by

method and the remaining computational details associated withapproximating the triplestriples block of the matrix represent-
the calculations performed in this work, we should mention that g F(ccsp) H(SSD) by its diagonal part, which is kept in its
the above expression for ti§.° amplitudes, eq 22, may have entirety, whereas other variants of CR-CC(2,3) are obtained from

to be modified somewhat if one of the indices, k, a, b, orc variant D by dropping terms in the diagonal partﬁbgfcsm.

. . . T
corresponds to an orbital that. IS dgggnerate with some other In this paper, we mainly focus on the most complete variant
orbitals. In that case, at least in principle, one should replace '

L S .~ D, for which we do not use any additional letter unless
eq 22 by a more elaborate expression in which, instead of usmgnecessary, and the simplest variant A, although we provide the

the diagonal matrix elemen@ﬁ-‘fﬂHfiCSD)]CI)ﬁ-‘Eﬂhat enterthe  oqyits of the CR-CC(2,3),B and CR-CC(2,3),C calculations in
Epstein-Nesbet-like denomln_atoD;bg eq 23, one solves a 4 few initial examples as well. As mentioned in the Introduction,
small system of linear equations, similar to eq 26, where all e CR-CC(2,3),A approximation to full CR-CC(2,3) (or CR-
amplitudes/;’}‘,ﬁ’C involving indices of degenerate spin-orbitals CcC(2,3),D) is equivalent to the CCSD¢2inethod of ref 44
are coupled together through the off-diagonal matrix elements when the canonical Hartredock orbitals are employed.
E‘DﬁmH(CCSD)|¢§ECDinV0|Ving the triply excited determinants  Although this is no longer exactly true for the ROHF case, the
that carry the indices of degenerate spin-orbitélsvithout differences between the ROHF-based CCSp(ahd CR-
taking care of this issue, the CR-CC(2,3) energy correction CC(2,3),A methods are so small that we use the acronym
00(2,3) is not strictly invariant with respect to the rotations CCSD(2) interchangably with CR-CC(2,3),A. On the basis of
among degenerate orbitals, although the dependence of thehe above remarks about the relationships between different
00(2,3) correction employing eq 22 to determine thﬁ’C variants of CR-CC(2,3), we expect the full CR-CC(2,3) approach
amplitudes on the rotations among degenerate orbitals isto be more accurate than the CCSRH(2)ethod of ref 44,
minimal. Indeed, all of our numerous tests indicate that changesrepresented here by the CR-CC(2,3),A approximation, and the
in the values 0B¢(2,3) due to the rotations among degenerate numerical evidence presented in this work and in the earlier
orbitals do not exceed 0.1 millihartree when we use eq 22 to paper§®68.76.77confirms this. An analogous relationship exists
determine all amplitudezsﬁ,ﬁ’c.76 Thus, the issue of the lack of between the CR-CC(2,3) method and the CCSD(2) approach
invariance of the CR-CC(2,3) correctiog(2,3) employing eq of refs 3741 if we neglect the contributions due to quadruples
22 with respect to the rotations among degenerate orbitals isin the latter approach. Specifically, the CCSD(2) method of
more of a formal problem than a practical one for the vast refs 3741 in its triples contribution part is, up to small
majority of applications, where one seeks accurate energetics,details, equivalent to variant B of the CR-CC(2,3) approach.
which the CR-CC(2,3) method provides. Clearly, if the molecule As in the case of variant A, variant B of CR-CC(2,3), being
has at most an Abelian symmetry or if the orbitals employed quite similar to variant A, is considerably less accurate than
break the non-Abelian symmetry, so that there are no orbital the full CR-CC(2,3) (i.e., CR-CC(2,3),D) method or variant C
degeneracies, then one can apply eq 22 to all amp|imgfé5 of CR-CC(2,3). Again, numerical evidence provided in section
Equations 26-24 describe the most complete variant of the Il confirms this.
CR-CC(2,3) approach that, in analogy to some of our earlier Interestingly, the CR-CC(2,3) approach also reduces to other
publications on the original CR-CC methods, such as refs 19, previously formulated noniterative CC methods of the (T) type
72, and 73, can also be designated by an additional letter Dif we make additional approximations in eqs—224 (see refs
(e.g., CR-CC(2,3),D). Other variants can be suggested by 66 and 67). For example, the CR-CC(2,3) approach reduces to
considering approximate forms of the denominzﬂ@g@ eq 23 the conventional CCSD(T) method if we replace the denomina-
(cf. ref 68). Thus, variant C is obtained by ignoring the last, tor DX , eq 23, in eq 22 by the spin-orbital energy difference

abc
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(6 + ¢+ ek — €a — en — &) (as is done in the CR-CC(2,3),A  of the Hamiltonian into unperturbed and perturbed parts. Thus,
approximation), neglect theAgH{C“*?)pc term in eq 22, the use of the complete form of the triply excited moments
which is at least a fourth-order term in many-body perturbation A/f/gt,c(z), eq 21, and the use of the complete form of the
theory (MBPT) if the HartreeFock reference is employed, denominatongﬁc, eq 23, in which all terms resulting from
replace the £1HSP)pc and (AHTP)c terms in the  [@{IHCCSP) @ Tare retained, as in the full CR-CC(2,3)
resulting expression, which appear in the third and second ordersCR-CC(2,3),D approach, enable us to avoid at least some of
of MBPT, respectively, by T}Viy)oc and(TVa)c, whereTyand ~ the problems complicating the ROHF-based implementations
T, are obtained in the CCSD calculations angis a two-body of CCSD(T) (refs 109-111) and CC3 (ref 112), because we
part of H — [@|H|®[] and approximate momemf/g’;c(z), eq never have to determine what terms in the Hamiltonian are

21, by the lead terl”@ﬁfcl(VNTz)cldﬂ Just like CCSD(2)and regarded as the zeroth-order terms. This, combined with the

CCSD(T), the CR-CC(2,3) method is rigorously size extensive. high accuracies and robustness that the CR-CC(2,3),D method

This has been illustrated numerically in ref 67. offers in applications involving radicals, biradicals, and single
There also is an interesting formal relationship between the 2Ond breaking, is one of the main advantages of the complete

CR-CC(2,3) approach examined here and the original CR- CR'CC(Z_'?’)’D approach.

CCSD(T) approach of refs 6662. In particular, one can show The price that we have to pay for all of these advantages of
(see ref 80 for details) that in addition to the linear terms in the theé CR-CC(2,3),D method is the slight dependence of the
triply excited moments// X (2) present in CR-CCSD(T) the ~ROHF-based CR-CC(2,3),D energies on the method of canoni-

b

CR-CC(2,3) method sums the disconnected product contribu- calization of the ROHF orbitals. Several methods of obtaining
tions involving J//ijléc(z) and the various many-body compo- the canonical ROHF orbitals exist in the literaté#e; 18 which
nents of &7z (theaone-bodw'l component, the two-bodyT differ in the way the diagonal doubly occupied, singly occupied,
+ (1/2)T?) component, etc.) to all orders. This allows one to and unoccupied blocks of the Fock matrix are constructed (see
1 , etc. . . . .
absorb_the renormalizing overlap _denominator term (1% UOSTENEIEE, S0 SAMEES S ceoron i, changes
[Wo|WCSPL) where |wSPis a CCSD wave function, ) ’

which enters the triples correction of CR-CCSD(T), such that inthe CR-CC(2,3),D energies due to different ways of obtaining

. ! ; the ROHF orbitals are on the order of tens of microhartrees or
the resulting correction to the CCSD energy gains the '[ransparentaOl kcal/mol, so again, as in the case of orbital degeneracies
form of eq 20. The absorption of the overlap denominator term ’ ' '

(W, (W (CCSO i h th  the d L litud this is more of a formal issue than a practical one. We should
abg'?o through the use of the de-excitation amplitudes  5iso keep in mind that even the basic CCSD approach, which
/i in the CR-CC(2,3) approach eliminates the small exten- js strictly invariant with respect to the canonicalization of the
sivity errors from the CR-CCSD(T) calculations, while the ROHF orbitals, is not invariant with respect to orbital rotations
additional product terms involving//J(2) and many-body  among the occupied orbitals and among the unoccupied orbitals
components of &2, which are effectively summed up to all  when one freezes core orbitals (which is what one usually does).
orders in the CR-CC(2,3) expressions, improve the accuracy|n fact, as shown in section Ill, changes in the CR-CC(2,3)
compared to the results of the CR-CCSD(T) calculatféié.  energies due to different ways of obtaining the canonical ROHF
We will discuss the details of the relationship between the CR- orbitals are often on the same order as Changes in the CCSD
CC(2,3) approach and the other methods derived from the energies when core electrons are frozen in post-ROHF calcula-
biorthogonal MMCC formalism of refs 66 and 67, on the one tjons. Moreover, with a given canonicalization scheme for the
hand, and CR-CCSD(T) and other methods derived from the ROHF orbitals, each variant of CR-CC(2,3) is a well-defined
original MMCC theory of refs 60, 61, and 70, on the other hand, and fully reproducible computational procedure. Given the fact
in a separate work that the dependence of the ROHF-based CR-CC(2,3),D energies
Let us, finally, return to the advantages and consequences ofon the way of producing the ROHF orbitals is, for most practical
using eq 23 for the denominat@X . in the definition of the purposes, negligible and given the excellent accuracies and other
CR-CC(2,3) triples correctiofig(2,3). As already pointed out  advantages that the full CR-CC(2,3) approach employing the
above, theDg‘BC denominator, eq 23, is expressed in terms of ROHF orbitals offers compared to other noniterative triples CC
the diagonal elements of the triptesiples block of the matrix ~ models, we believe that the ROHF-based implementation of the
representing the CCSD similarity-transformed Hamiltonian CR-CC(2,3) method tested in this work, which we have
H(CCSD) rather than the more usual MBPT-like differences of incorporated in the widely used GAMESS package, will find
bare spin-orbital energies that are used in the CCSD(T), good use in quantum chemistry. One of the big advantages of
CCSD(2), and CR-CCSD(T) approaches. This is particularly GAMESS is that the user can choose a particular ROHF
useful in the CR-CC(2,3) calculations for open-shell systems canonicalization method in the input (with Roothaan’s schéfne
employing the ROHF orbitals, such as those discussed in sectionbeing the defautf?). Thus, anybody interested in implementing
lll, because the use of the conventional spin-orbital energy the CR-CC(2,3) approach using the ROHF reference, as
differences &, + e, + €. — € — € — € instead of the complete ~ discussed in this work, can verify the correctness of their
form of the diagonal matrix elements EfCSP)involving triply implementation by selecting the suitable ROHF canonicalization
excited determinants to define the denomindddf, eq 23,  scheme in the GAMESS input to the ROHF-based CR-CC(2,3)
leads to additional formal and practical difficulties related to calculations.
the choice of the unperturbed Hamiltonian to define the orbital ~C. Remaining Computational Details.The straightforward
energies and the presence of the off-diagonal matrix elementsformal relationships between the CR-CC(2,3), CCSR(2)
in the spin-orbital form of the Fock matrix written for the ROHF  CCSD(T), and CR-CCSD(T) methods imply that computer costs
orbitals (cf., e.g., refs 169112 for a discussion of these issues characterizing all of these methods are very similar. Indeed,
in the context of the ROHF-based implementations of the when properly implemented, the CCSD(T), CR-CCSD(T),
conventional perturbative CCSD(T) and CC3 methods). We do CCSD(2}, and CR-CC(2,3) approaches axgn,* schemes in
not have to deal with those kinds of issues in the full CR- the iterative CCSD steps an@®n,* procedures in the nonit-
CC(2,3) calculations, which do not rely on a decomposition erative steps needed to construct the relevant triples corrections,
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wheren, andn, are the numbers of occupied and unoccupied
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with any high-spin referencédl] including the ROHF and

orbitals, respectively, used in the correlated calculations. Specif- unrestricted HartreeFock (UHF) reference determinants. How-

ically, in analogy to CCSD(2) the CR-CC(2,3) approach is

ever, at this time, the CR-CC(2,3) code is intimately interfaced

an ny2n,* method in the iterative CCSD steps that generate the with the ROHF integral routines from GAMESS!i.e., after
T, and T, clusters and in the additional iterative steps that are the ROHF calculation performed by GAMESS, we call the

needed to obtain thA; and A, components of the left CCSD
state (needed to construct thﬁ’c amplitudes, eq 22). Because
the iterative computational steps needed to calculateand
Az no longer require recalculating the matrix elementis! 65P)

efficient integral transformation routines, also taken from
GAMESS, and then sort the resulting molecular integrals, using
the routines written by Dr. Michael W. Schmidt, according to
the number of occupied and unoccupied orbital indices that label

or other intermediates of CCSD in every iteration, in many cases them and according to the spin type of each orbital indear(

the time spent on generatimy; and A» is less than the time
spent on the CCSD iterations foy andT,. In general, the time
spent on the left CCSD iterations that produceand A, does

p) in a usual way. Once this is done, we go through the CCSD
iterations to calculat@&;, andT,, left CCSD iterations to calculate
A1 and Ay, and noniterative steps needed to determine the

not exceed the time spent on the standard CCSD iterations that'iples correction®(2,3) of the CR-CC(2,3),AD approaches.

yield T; and T». In other words, the iterative part of the CR-

As in the case of the earlier closed-shell CR-CC(2,3) codes (and

CC(2,3) calculation does not use more than twice the time spentother CC programs) interfaced with the RHF routines from

on the iterative parts of the CCSD(T) and CR-CCSD(T)
calculations, which do not neefdl; and A, to construct the

GAMESSS$6.7211%the CCSD nonlinear equations for ttieand
t!, cluster amplitudes and the left CCSD linear equations for

relevant triples energy corrections and which are solely basedA? and/lfj‘b de-excitation amplitudes are solved using the usual

on the usual CCSD iterations. In analogy to the CCSpé2d
CR-CCSD(T) methods (cf.,, e.g., refs 44 and 119 for a

DIIS algorithm!20-123 By determining thei? and ii‘}‘b ampli-
tudes that define thé\; and A, operators of the left CCSD

discussion), the noniterative steps required to calculate the triplesstate, we automatically gain access to the one-electron density

correctiondg(2,3) of CR-CC(2,3) are only twice as expensive
as the noniterativen,®n,* steps used to construct the (T)
correction of CCSD(T). This factor of 2 is related to the need
for the ne®ny* steps in constructing the triexcited moments
U,f//gﬁc(Z), eq 21, and the additiona§®n,* steps that are needed
to construct thed®|(A,H5 )| @ Ccontribution to the/§i°
amplitudes, eq 22, which enter the expressiondg®,3), eq

matrix of the CCSD ground-state wave functigit?5910%/f =
[@|(1 + A1+ Aj)a’a,| P wherea’a, = e i T2 aPag €' T,

and the corresponding one-electron propeltigs®.107.108n
addition to correctiongy(2,3) of the CR-CC(2,3),AD methods.
This is yet another advantage of the CR-CC(2,3) methodology,
which produces accurate triples corrections to CCSD energies
along with one-electron properties calculated at the CCSD level.

20. In summary, the CR-CC(2,3) approach, being at most twice Although we plan to work on the UHF-based CR-CC(2,3) code
as expensive as CCSD(T) when the CPU time requirementsin the long-term future, once the suitable molecular integral
are examined, is essentially as practical as the CCSD(T), infrastructure for the UHF basis is developed within GAMESS,
CCSD(2}, and CR-CCSD(T) approaches. Similar remarks apply the use of the spin- and symmetry-adapted ROHF reference in
to memory requirements and disk usage. In particular, in analogy the CR-CC(2,3) calculations has a very important advantage of
to CCSD(T) and similar methods, we can completely eliminate eliminating, to a large extent, the issues of symmetry breaking
the need for storing the three-body quantities ofrikfa,2 type and spin contamination that plague the UHF-based correlated
(the .7 g'gc(z) and /S‘EC quantities are in this category) and calculations. Theoretically, there may be some problems in cases

determine the energy correctiody(2,3) by computing the
relevant 7/ Jf (2) and/{.° contributions on the fly. As we have
done in the past when coding other CR-CC meth@dg,>11°
in constructing the individual// J (2) and/° terms, which

have to be multiplied and summed up to produce the correction

00(2,3) following eq 20, we use explicit loops ovielj, andk
only (see, for example, refs 73 and 75 for the overall loop
structure defining the calculations of noniterative triples cor-
rections in our other efficient CR-CC codes). As in refs 73 and
75, we do not use explicit loops ovay b, andc to determine
X (2) and/ii}‘lﬁ’C and calculate first the corresponding par-
tially antisymmetric six-index quantities that are antisymmetric
with respect ta, j, andk but not with respect t@, b, andc.

These partially antisymmetric six-index quantities are antisym-

metrized with respect to indices b, andc to produce the final
values of.//J(2) and/° for a given set of < j < kanda

< b < c only at the very end when one needs to multiply
MK (2) by / I’j‘fc to form a particular contribution tdq(2,3).
By avoiding the explicit loops ovea, b, andc in the most

where ROHF incorrectly favors localizing the unpaired elec-
trons, but we have not encountered anything unusual in our CR-
CC(2,3) calculations that would indicate the significance of such
problems in the context of CR-CC(2,3) considerations. The CR-
CC(2,3) approach seems robust enough to work well with the
ROHF references. In general, the overall benefits of using the
spin-adapted ROHF reference functions in the CR-CC(2,3)
calculations are, in our view, much more important than any of
the potential formal or numerical complications that the use of
such references may lead to, particularly because the ROHF-
based CR-CC(2,3) method is very accurate and capable of
eliminating the deficiencies of the reference determinant. Indeed,
one of the major advantages of the CR-CC(2,3) and other CR-
CC approaches, particularly in cases involving stronger quasi-
degeneracies that occur in bond breaking and biradical situations,
is that unlike the conventional CC methods of the CCSD(T)
type the CR-CC(2,3) and other CR-CC approaches work well
with the spin- and symmetry-adapted references of the restricted
type.17—19'25’30’31’33’44'50'51'662’64_68’72_77’119’12‘4—146 The present

paper shows that the same is true in open-shell cases employing

essential and most computationally intensive part of the code the ROHF references.

that calculates// J (2) and/§, we maximize the benefits of
using fast matrix multiplication routines, while eliminating the
need for storing large// ™ (2) and/ ,ch vectors of then,®n,®
type.

The efficient open-shell implementation of the CR-CC(2,3)

The triply excited moments of the CCSD equatio:ﬁég'gc(Z),
eq 21, which are the key quantities for the CR-CC(2,3)
calculations, have been coded by integrating the factorized,
computationally efficient expressions, exploiting the idea of
recursively generated intermediates, which we obtained with

code used in this work has been written such that it can work the diagrammatic method and presented in refs 73 and 75, over
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the relevant spin variables. Similar spin-integrated spin-orbital son!'” and Binkley, Pople, and Dobodk The activation
expressions have been developed for /tﬁ%c amplitudes, eq  energies for the &4 + H — CoHs reaction are part of the
22, and other elements of the CR-CC(2,3) calculations. One of databases used to assess the performance of electronic structure
the most characteristic features of our approach to coding methods in thermochemical kinetics studi€sThus, the GH4
moments.// ¥ (2) and other quantities that are present in the + H — CzHs reaction gives us an opportunity to comment on
CR-CC(2,3) expressions is the maximum use of the one- andthe potential applicability of the CR-CC(2,3) approach in the
two-body matrix elements of the similarity-transformed Hamil- calculations of barrier heights characterizing chemical reactions
tonian of CCSD,H(CCSD) eq 5, which we use as natural involving radical species. Each calculation examining the
intermediates for all CCSD-based CC calculations. dependence of the CR-CC(2,3) energies on the method of
The results obtained with the ROHF-based CR-CC(2,3) code obtaining the ROHF orbitals was performed in two different
used in this work reduce to those obtained with the RHF-basedways, namely, with frozen-core orbitals and with all electrons
CR-CC(2,3) code of ref 66, exploited in a number of earlier correlated in the CC steps. In the former case, no CC method
studies30:31.33.6668,76,77\yhen the calculations are performed for IS invariant with respect to the rotation of occupied and
the singlet electronic states. Because the number of triple unoccupied orbitals. In the latter case, the CCSD energies are
excitations in the spin-integrated spin-orbital formulation is twice independent of the method of canonicalization of the ROHF
the number of triples in the corresponding closed-shell case (weorbitals.
have to consider thefs — afBp andpp — [P spin cases The calculations for OH, which is a good representative of
for triple excitationsi,j,k — a,b,c, in addition to theoao. — radical species studied in various areas of chemistry, were
aoo andaaf — aof cases present in the closed-shell case), performed with the 6-31G(d,p) basis $&t,14° for which we
the CPU time spent on computing the CR-CC(2,3) correction could perform the exact, full Cl calculations using GAMESS,
00(2,3) in the open-shell formulation should be twice the time enabling us to assess the accuracy of various CC approximations.
needed for the computation @fo(2,3) in the spin-free (or  |n the case of bond breaking iy Fwhich is a very challenging
nonorthogonally spin-adapted) closed-shell formulation. On the problem for the single-reference methods, we performed two
basis of a large number of tests, where we have run the presentets of CC calculations. In the first set of calculations, we used
ROHF-based CR-CC(2,3) code and the earlier, highly efficient the 6-31G basis sét7-148which is small enough to enable the
RHF-based CR-CC(2,3) code side by side for a variety of singlet exact, full CI calculations, which we performed with MOL-

ground states, we can state that the open-shell computerPRO% |n the second set of calculations, we used the aug-cc-
implementation of the CR-CC(2,3) method tested in this study p\/TZ basis set47:151.153n this case, we were unable to perform

satisfies this condition. Further details of the 0p9ﬂ-3he” CR- full Cl calculations due to the enormous costs that such
CC(2,3) code benchmarked in this work will be provided calculations would require, so we used the MRCI(Q) approach

elsewheré? of refs 34 and 35, as implemented in MOLPRO, instead to
. ) . provide reference energy values for assessing the relative
lll. Numerical Examples and Discussion performance of various noniterative triples CC methods. We

To demonstrate the types of improvements that the CR- also carried out the MRCI(Q) calculations for the 6-31G basis
CC(2,3) method can offer in applications involving open-shell S€t which we could compare with full CI, to make sure that
problems, when compared to other noniterative triples methods, MRCI(Q) provides a reasonable benchmark for comparing
including CCSD(T), CCSD(3) and CR-CCSD(T), and the the CCSD, CCSD(T), CCSD()(i.e., CR-CC(2,3),A), CR-
underlying CCSD approach, we consider the following five CCSD(T), and full CR-CC(2,3) methods. The MRCI(Q) cal-

molecular examples, grouped into two categories: (i) the culations were performed in t_he usual way, using the complet_e-
potential energy curves of the OH radical anliBn and (ii) active-space self-consistent-field (CASSCF) reference and active

the singlet-triplet energy gaps in the GHHHeH, and (HFH) orbitals that gorrelate with the 2s and 2p shells of both F atoms.
biradical systems. In all of the CC calculations performed in 1he calculations for OH and,Fwere performed for a number
this work, we used the symmetry-adapted ROHF references forOf intemuclear separationBo— andRe—r, respectively, stretch-
the doublet and triplet states and symmetry-adapted RHF N the bonds in each case by a factor of 3 (approximately 3 in
references for the singlet states. Unless otherwise indicated,tn® OH case), which is more or less equivalent, to within a
Roothaan’s variant of the ROHF approdéhwhich is a default millihartree or so, to reaching the relevant asymptotes. The
in GAMESS, was employed. With the exception of tests dealing corresponding equilibrium bond lengths for OH anf Wwere
with the dependence of the CR-CC(2,3) energies on the methodtaken from ref 153.
of canonicalization of the ROHF orbitals, in all correlated The CCSD, CCSD(T), CCSD(2Ji.e., CR-CC(2,3),A), CR-
calculations reported in this work, the lowest-energy molecular CCSD(T), and CR-CC(2,3) calculations of the adiabatic singlet
orbitals that correlate with the 1s orbitals of the C and F atoms triplet (A'A;—X3B;) energy gap in the Cgbiradical, which is
were kept frozen. Unless otherwise stated, the sphericala classic test case that requires the precise and well-balanced
components of the d and f orbitals were employed. incorporation of electron correlation effects and an accurate
In addition to the above examples, we use the activation description of the ground and excited states of different
energies of the &1, + H — C;Hs forward and reverse reactions, symmetries and multiplicities, were performed in two different
which proceed on a doublet potential energy surface, the ways. In the first set of calculations, we used the geometries of
corresponding total electronic energies of thélgproduct and the X®B; and AlA; states of CH given in ref 89 and
transition-state species, and the lowest triplet states of the CH Dunning’s®* [4s2p/2s] double: (DZ) basis set, scaled for the
(ref 94) and HSIi,O, (ref 106) biradicals to examine the H atoms, and augmented with one set of polarization functions
dependence of the CR-CC(2,3) energies on the method of(DZP), also described in ref 89. The corresponding full Cl results
canonicalization of the ROHF orbitals. We tested six different were taken from ref 89 as well. As in ref 89, the six Cartesian
ways of performing the ROHF calculations using the canoni- components of the carbon d orbital were used in the calculations.
calization approaches of RoothadfMcWeeny and Dierck- In the second set of calculations, we used the [5s3p/3s] tEiple-
seni* Guest and Saundet¥, Faegri and Mannéi® David- (TZ) basis set of Dunningf® augmented with two sets of
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polarization functions (TZ2P), as described in ref 94, and the
full Cl geometries of the $8; and A'A; states of CH
determined for this basis set in ref 94. The corresponding full
Cl energies were taken from ref 94 as well. Following ref 94,
in the calculations for CKHusing a TZ2P basis set, in addition
to freezing one core orbital (as in the DZP case), we dropped
the highest-energy virtual orbital from the correlated calcula-
tions.

The CCSD, CCSD(T), CCSD(2) CR-CCSD(T), and CR-
CC(2,3) calculations of the energy gap between the triplet
excited state (AZ;) and singlet ground state {X;) of the
linear HHeH system, which was used in the earlier studies to
examine the effectiveness of various ab initio and density
functional theory methods in modeling magnetic exchange
coupling constant®-193were performed with the 6-311G(d,p)
basis set*"156The analogous calculations for the linear (HFH)
system, which, in addition to being a biradical, has a polarizable
diamagnetic entity in the cent& have been performed with
the 6-31G(d,p) basis s&~14°In both cases, to vary the degree
of biradical character and the magnitude of th&A-X15;
gap, we used several values of the-He and H-F distances,
Ry—ne andRy—r, respectively, defining the linedbwn-symmetric
HHeH and (HFHJ systems, in which the terminal H atoms
are linked via the diamagnetic central atom (He in the HHeH
case and Fin the (HFH) case). ThdRy_pe distances in HHeH
were varied fronRy—pe = 1.25 A toRy—_he = 5.0 A. TheRy_¢
distances in (HFH) were varied fromRy—r = 1.5 A to Ry—r
= 4.0 A. ShorterRy-pe and Ry—r distances correspond to
moderately strong biradicals. Long®i—ne andRy—f distances
correspond to essentially pure biradicals, where the H atoms
separated by a very large distance weakly interact via a
diamagnetic bridge, giving rise to nearly degenerate singlet and
triplet states. The RHF/ROHF-based CCSD, CCSD(T),
CCSD(2), CR-CCSD(T), and CR-CC(2,3) results for the HHeH
and (HFH) systems are compared with the full Cl data,
obtained with GAMESS and MOLPRO, and with the UHF-
based CCSD, CCSD(T), QCISB’ and QCISD(T) results
obtained with Gaussian 988

The calculations for the £, + H — C,Hs, CH,, and
H.Si,O, systems, which are used to examine the effect of the
method of canonicalization of the ROHF orbitals on the CR-
CC(2,3) results, were performed with the aug-cc-pVTZ (frozen-
core) and aug-cc-pCVTZ (all-electron) basis §8t51159n the
case of the gHs + H — C,Hs reaction, the TZ2P basis 8&#55
in the case of Chl and the 6-311G(d,p) basis ¥€tL56.15%n
the SO, case. In the case of thelds + H — CyHs reaction,
the relevant nuclear geometries of thgHg and GHs species
were taken from ref 105. In the case of the triplet ground state
of CH,, the relevant nuclear geometry determined with full CI
was taken from ref 94. The calculations for the lowest triplet
state of HSiLO, were performed using the geometry of the
corresponding singlet structure determined with the two-
configurational SCF approach in ref 106.

We begin our discussion with the potential energy curves of
the OH and E systems (section IlIA). The results obtained for
the singlet-triplet gaps in the Ch HHeH, and (HFH) systems
are discussed in section 1lIB. The effect of the method of
canonicalization of the ROHF orbitals on the CR-CC(2,3) results
for the energetics of the £, + H — C,Hs reaction and triplet
states of CH and HSi»O- is discussed in section IlIC.

A. Potential Energy Curves of OH and R*. We first
examine the ground-state potential energy curve of the “easier”
OH system, which is typical of many radical species. The results
of our calculations for OH are collected in Table 1. Because

TABLE 1: Ground-State Energies of the OH Radical, as Described by the 6-31G(d,p) Basis S&t,14° Obtained with the Full CI and CC Methods at the Representative
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1.915
0.939
1.084

CCsSD

4.004
4.528

2.84F

4.854
4.385
4.940

2.884
2.909

0.595
0.608

aThe full Cl energies are in hartree. The CC energies and the corresponding MUE and NPE values are in millihartred BiaDceRo- are in angstroms. In all correlated calculations, the lowest

occupied I orbital was kept frozer The equilibrium bond length taken from ref 15Defined as the approximate variant A of CR-CC(2,3) described in the&xfuivalent, up to small details, to the

triples part of the (2) correction of the CCSD(2) method of refs 37 and Buivalent to the full variant D of CR-CC(2,3) described in the text.

CCSD(T)
CR-CCSD(T)
CCSD(2)*°
CR-CC(2,3),8
CR-CC(2,3),C
CR-CC(2,3}
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the dissociation of OH is a process that is formally somewhat 198.25
simpler than a single bond breaking and because one of the )
two dissociation fragments, the hydrogen atom, is a one-electron 0
system that is described by any of the methods used in this I B Y o~
work exactly, the CCSD approach provides a qualitatively =
correct description of the bond breaking in OH. This is reflected Eﬁ B oocod
in the relatively small values of the maximum unsigned error b &—CCSD(T)
(MUE) and nonparallelity error (NPE; NPE is defined as the = S accea ™
difference between the most positive and most negative signed -198.35 BBCR-CC)
errors along a given potential energy curve) relative to full Cl, J *HMRAQ
characterizing the CCSD results for OH shown in Table 1, which 1.0 2.0 3.0 4.0
are 10.935 and 9.203 millihartree, respectively. The conventional R,_, (Angstroms)
CCSD(T) method further improves the CCSD results, reducing
the MUE and NPE values resulting from the CCSD calculations _198.55 1
to the relatively small values of 3.122 and 2.788 millihartree, >
respectively. Very similar improvements in the CCSD results £
are observed when instead of CCSD(T) one uses the triples g 19860
corrections of the CR-CCSD(T) and CCSD(2ypproaches. g

One might think that it is virtually impossible to improve ? 198.65 4 D
these already very good results any further using the idea of 5 A—ACR-CCSD(T)
the relatively inexpensive noniterative corrections to the CCSD —198.70 | B
energies due to triple excitations, but our CR-CC(2,3) calcula- F—KMRCI(Q)

tions indicate that additional improvements in the CCSD(T), —198.75
CR-CCSD(T), and CCSD(2Yyesults are still possible. Indeed,

the most complete variant of the CR-CC(2,3) approach (variant _ ) _ )
D) reduces the already relatively small MUE and NPE values Figure 1. Comparison of the potential energy curves gfresulting

. from the CCSD, CCSD(T), CR-CCSD(T), CCSDf{Zppproximated
characterizing the CCSD(T), CR-CCSD(T), and CCSBR(2) by CR-CC(2.3).A), and CR-CC(2.3) calculations, employing The

results for OH to as little as 2.909 and 2.847 millihartree, ,gapted ROHF reference and the (a) 6-31G and (b) aug-cc-pVTZ basis
respectively. What is most encouraging here is the fact that the sets with the corresponding potential energy curves obtained in the (a)
CR-CC(2,3) method is more accurate than CCSD(T) at all full Cl and MRCI(Q) and (b) MRCI(Q) calculations.
internuclear separatiori®&—u, including the equilibrium region,
where CCSD(T) performs very well. In particular, the full CR- of the CR-CC(2,3) theory are practically none, implying the
CC(2,3) approach reduces the 0.466 millihartree error at the negligible role of the three-bod@)ﬁ‘,ﬁ’ﬂH(SCCSD)|®§‘E°Dcontribu-
equilibrium geometry of OH resulting from the CCSD(T) tions to the denominatoD. In conclusion, the full
calculations to 0.168 millihartree. The CR-CCSD(T) and CR-CC(2,3) method provides a highly accurate description of
CCSD(2) methods are slightly less accurate than CCSD(T) in hond breaking in the OH radical, improving the results of the
the equilibrium region, which is consistent with the earlier ccsp(T), CR-CCSD(T), and CCSD¢alculations at all ©H
calculations for closed-shell systems. The CR-CCSD(T) and separations and providing a more accurate description of the
CCSD(2) methods provide virtually identical results at all  equilibrium region than the widely used CCSD(T) approach.
values ofRo-w, which agrees with the earlier studies of single  The excellent performance of the CR-CC(2,3) method in the
bond breaking on singlet potential energy surfeéS.®>""7  ¢aqe of OH is clearly very encouraging from the point of view
The full CR-CC(2,3) approach behaves in a different manner, of the future applications of this method to reaction pathways
reducing the errors observed in the CR-CCSD(T) and jnyolving radicals, so let us examine now what happens when
CCSD(2) (i.e., CR-CC(2,3),A) calculations by a substantial the CR-CC(2,3) approach and other noniterative triples CC
factor, which in the case of bond breaking in OH is usually approximations are applied to a different kind of a problem,
between.2 and 3. Again, th|§ parallels some of our egrller the highly demanding }system. We chose this particular
obser\(atloerlis ;/Zf;?n we studied bond breaking on singlet example for several reasons. First of all, the nature of the F
potenuals‘?' T ~ system is such that we cannot expect perfect performance of
Interestingly, variant B of the CR-CC(2,3) method, which is - any ccsD(T)-like approximation, including CR-CC(2,3), in this
practically identical to the triples correction of the CCSD(2) case. In analogy to the neutral Folecule (cf., e.g., refs 124
approach of Gwaltney and Head-Gorddi¥} is less accurate 54 137), the dissociation of thg Fon is a very complicated
than variant A of CR-CC(2,3). In fact, the CR-CC(2,3).B yireference problem, characterized by a rapid increase of the
approximation is characterized by larger MUE and NPE values nonqynamical correlation effects as the-fF bond stretches,
than those characterizing the CR-CCSD(T) results. Clearly, the yhich s difficult to capture with single-reference meth8§$3
use of the o_r;e-body ter@ﬁECIHSCCSD)Iq’f?ECD_T hd + hy + h¢ As in the case of the Fmolecule, an accurate description of
— h — hi = hy alone in the definition of th@}; denominator,  the K dissociation with the single-reference CC methods that
as is done in variant B of CR-CC(2,3), is not sufficient to exploit the spin- and symmetry-adapted HartrEeck reference
improve the CCSD(3)or CR-CCSD(T) results. One needs to  of the restricted type may require an explicit incorporation of
go beyond the one-body componentsHf“*” in defining quadruply excited clusters. The CR-CC(2,3) method ignores the
Dgﬁc as is done in variants C and D of CR-CC(2,3), to T, clusters altogether, so the results of the CR-CC(2,3) calcula-
improve the results of the CCSD)r CR-CCSD(T) calcula- tions based on the symmetry-adapted ROHF reference cannot
tions. The CR-CC(2,3),C results in Table 1 are slightly more be as good as in the OH case, but it is still quite interesting to
accurate than the results of the full CR-CC(2,3) calculations investigate if the CR-CC(2,3) approach can provide improve-
with variant D, but the differences between these two variants ments in the results obtained with other noniterative triples CC

1.0 15 20 25 3.0 35 40
R |_;(Angstroms)
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TABLE 2: Comparison of Various CC Ground-State Energies with the Corresponding Full Cl and MRCI(Q) Results Obtained
for a Few Geometries of theF, Molecule with the 6-31G7-148and aug-cc-pVTZ47151152B3asis Sets, and the MUE and NPE
Values Characterizing the CC and MRCI(Q) Results Relative to Full Cl in the 6-31G Case and the CC Results Relative to
MRCI(Q) in the aug-cc-pVTZ Case?

method 0.78 R 1.2 1.5Re 17Re
6-31G
full Cl© —198.059252 —198.345407 —198.350097 —198.314945 —198.291842
CCsD 3.897 13.478 26.445 36.182 38.799
CCSD(T) 0.905 3.722 7.037 6.103 —4.291
CR-CCSD(T) 1.279 5.288 11.229 15.283 14.444
CCSD(2)" 1.134 4.889 10.584 14.379 12.865
CR-CC(2,3),B 1.224 5.598 12.681 18.129 17.831
CR-CC(2,3),C 0.397 1.727 4.078 5.342 4.163
CR-CC(2,3) 0.414 2.139 5.787 8.637 7.614
MRCI(Q)? 1.938 1.419 1.491 1.672 1.561
aug-cc-pvVTZ
MRCI(Q)? —198.544634 —198.737808 —198.697538 —198.651729 —198.627569
CCsD 8.192 22.789 42.694 60.088 72.611
CCSD(T) —4.190 —1.102 3.173 4.296 0.552
CR-CCSD(T) —2.520 3.076 11.980 19.879 25.108
CCSD(2)" —3.240 1.458 9.376 16.128 19.376
CR-CC(2,3),B —2.931 2.621 12.431 21.545 27.030
CR-CC(2,3),C —4.421 —1.885 3.000 7.218 9.072
CR-CC(2,3) —4.412 —1.660 4.261 10.214 13.698
method R 2.9Re 3Re MUE NPE
6-31G
full Clc —198.286194 —198.283840 —198.283050
CCSD 39.152 35.051 32.691 39.152 35.255
CCSD(T) —17.510 —35.460 —41.834 41.834 48.871
CR-CCSD(T) 13.531 8.985 6.306 15.283 14.004
CCSD(2)! 10.943 5.503 2.666 14.379 13.245
CR-CC(2,3),B 16.407 11.431 8.925 18.129 16.905
CR-CC(2,3),C 4.367 0.747 —1.524 5.342 6.866
CR-CC(2,3) 6.714 2.494 0.249 8.637 8.388
MRCI(Q)? 4.465 4.558 3.150 4.558 3.139
aug-cc-pvTZ
MRCI(Q)¢ —198.618418 —198.614724 —198.614744
CCSsD 80.086 85.063 85.999 85.999 77.807
CCSD(T) —7.123 —21.562 —27.980 27.980 32.276
CR-CCSD(T) 27.375 26.925 25.787 27.375 29.895
CCSD(2)! 18.976 14.846 12.490 19.376 22.616
CR-CC(2,3),B 28.411 26.342 24.934 28.411 31.342
CR-CC(2,3),C 8.436 5.160 3.694 9.072 13.493
CR-CC(2,3) 13.964 11.128 9.759 13.964 18.376

aThe full Cl energies for the 6-31G basis set and the MRCI(Q) energies for the aug-cc-pVTZ basis set are in hartree. The CC and MRCI(Q)
energies relative to full Cl for the 6-31G basis set, the CC energies relative to MRCI(Q) for the aug-cc-pVTZ basis set, and the corresponding MUE
and NPE values are in millihartree. In all correlated calculations, the lowest two occupietbitals were kept froze?.Re = 1.322 A is the
equilibrium value of the internuclear distanBe_¢ taken from ref 153° Due to convergence problems at the internuclear distaRegs= 2R,
2.5R,, and ., when the ROHF orbitals were used in the full CI calculations, the reported full Cl energies were obtained by performing the
CASSCEF calculations, in which all orbitals in a molecular orbital basis set other than the lowest two core orbitals were chosen as active orbitals.
The differences between the full Cl results obtained in this way and the results of full CI calculations employing the ROHF orbitals-&t the F
distanceRr ¢ = 0.7R, R, 1.25,, 1.5R,, and 1.7R., where no convergence problems occcur,-afé, —11, —14, —11, and—9 microhartree,
respectivelyd Defined as the approximate variant A of CR-CC(2,3) described in the%tExfuivalent, up to small details, to the triples part of the
(2) correction of the CCSD(2) method of refs 37 and ‘@quivalent to the full variant D of CR-CC(2,3) described in the téXthe active space
consisted of the molecular orbitals correlating with the 2s and 2p shells of the F atoms.

approaches in the case of.FOne of the most challenging one must proceed with extra caution. In the case bftﬁe
problems that the single-reference methods face, when bondsingle-reference methods that imposethg or D2, symmetry
breaking in F is examined, is the possibility of the breakdown on the reference determinant (preserving, in particular, the
of the inversion symmetry (lowering of the symmetry fran, inversion symmetry) may experience severe difficulties in
10 Cos, OF D2 t0 Cz,) by the UHF or ROHF calculations, which  jescribing the dissociation of the ground-stafe olecule
may significantly impact the results of the correlated single- into F(2F %) + F'(2p* 3P). As in the case of bond breaking

reference calculations employing the UHF or ROHF refer- ; .
ences28 The spin- and symmetry-adapted multireference of closed-shell molecules into open-shell fragments, the descrip-

methods employing the CASSCF and other properly constructedtion of bond breaking in 1: by the single-reference CC
multideterminantal references do not have such problems (cf., methods may benefit from using the spin- and symmetry-broken
e.g., the MRCI calculations forZE employing the generalized ~UHF references. This has been demonstrated by Watts and
valence bond (GVB) referencé? or our MRCI(Q) results in Bartlett® who showed that one may obtain a reasonable
Table 2 and Figure 1), but in the single-reference calculations description of the entire potential energy curve §f\ﬁth the
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single-reference CC methods employing the spin- and sym- TABLE 3. Adiabatic A *A;—X3B; Splitting in CH , Obtained
metry-broken C,,-adapted) UHF reference. This is not possible With Full Cl and Various CC Approaches and the DZP

if one employs a single-determinantal reference configuration Basis Set

adapted to the spin and spati&l.{, or Do) Symmetries of the By AAY E(P(\lﬂsq) )*
. . E(X®B;, E(AA, E(X°B;

Hamiltonian of F; method (hartree) (hartree) (kcal/mol)

Indeed, the use of the symmetry-adapted single-determinantal

references creates a situation where the nondynamic correlation full cI# —39.046260  —39.027183 11.97

- . —39.044 111 —39.023 639 12.85
effects pecom-e very |arge and difficult to descrlbe by the CCSD(T) —39.045 893 —39.026 310 12.29
conventional single-reference methods, even in the region of cr-ccsD(T) —39.045744 —39.025 970 12.41
the intermediate stretches of the-F bond in K. This can be CCSD(2) —39.045791  —39.026 058 12.38
seen in Table 2 and Figure 1, where we compare the results of gggggggg :gg-gjg Zg? :gg-ggg ggg igié
the CCSD, CCSD(T), CR-CCSD(T), QCSD{ZIl.e., CR- CR-CC(2:39' 30046261 —39.026 850 1218
CC(2,3),A), and full CR-CC(2,3) calculations fos Femploy- ) ) ]
ing the Dr-adapted ROHF reference, with the exact, full Cl 2 The basis sets, geometries, and full Cl energies were taken from

. ref 89. As in ref 89, in all correlated calculations, the lowest occupied
results and the results of the accurate MRCI(Q) calculations. orbital was kept frozen, and Cartesian components of the carbon d

Indeed, the errors in the CCSD results relative to full Cl and qpjta| were employed: Defined as the approximate variant A of CR-
MRCI(Q) are large already at the equilibrium geometry, CcC(2,3) described in the textEquivalent, up to small details, to the
exceeding 10 millihartree in the case of the 6-31G basis settriples part of the (2) correction of the CCSD(2) method of refs 37 and
and 20 millihartree in the case of the aug-cc-pVTZ basis set, 39.“ Equivalent to the full variant D of CR-CC(2,3) described in the
and it is sufficient to stretch the-FF separation by 25% to  text.

double these errors. The MUE and NPE values relative to full . :

- ._internuclear separations. The CR-CCSD(T) and CCSD(2)
cl c_harﬁcterlz_lng the_CgiD rissults for_ the shmall 6'.31?] basis approaches reduce the very large errors in the CCSD results at
set |n t_ e entireRe—¢ = : Re—3Re region, whereRe is t ?. all F—F separations by a substantial factor. This is clearly
equilibrium bond length in F, are 39.152 and 35.255 milli-  reflected in the MUE values, which in the case of the 6-31G
hartree, respectively (similar values would be obtained if we pacis set are 39.152 millihartree for CCSD and 15.283 and
used the MRCI(Q) energies as reference energies in determining; 4 379 millinartree for CR-CCSD(T) and CCSDfZ).e., CR-
MUE and NPE; cf. Table 2). The MUE and NPE values relative  cc(2,3),A), respectively. In the case of the aug-cc-pVTZ basis
to MRCI(Q) characterizing the CCSD results obtained with get \yhere MUE values are calculated relative to the MRCI(Q)
the aug-cc-pVTZ basis set of 85.999 and 77.807 millihartree, energies, the CR-CCSD(T) and CCSB{(@pproaches reduce
respectively, are so large that the CCSD approach producesy,e hyge MUE value of 85.999 millihartree to 27.375 and 19.376
a potential well that is approximately 50% deeper than that jjinartree, respectively. The ROHF-based CR-CCSD(T) and
obtained with the MRCI(Q) approach (cf. Figure 1b). ccsp(2) approaches replace the well-pronounced humps on
Indeed, if we calculate the binding enerQy as the difference 1o cCSD(T) curves at the intermediate fF distances by the
of energies obtained & = 3R. andRr—r = Re, then the i,y hymps, which in the case of the aug-cc-pVTZ basis set are
MRCI(Q)/aug-cc-pVTZ approach give3e = 3.35 eV, which about 1 millihartree for CR-CCSD(T), with a maximum on the
compares very well with the experimenta}, value of 3.41  corresponding potential curve defining the hump reach@.at
eVis3isiand the GVB-based MRCI value @, of 3.00 eV > 5r, and about 3 millihartree for CCSD@Yi.e., CR-
reported in ref 160. The CCSD method employing the aug-cc- cc(2,3),A), with a similar maximum on the CCSDf{2)otential
pVTZ basis set and the symmetry-adapted ROHF referencegnergy curve found @-_r ~ 2R (cf. Figure 1b). Clearly, these
gives 5.07 eV, which clearly is a much worse result. As ONe are major improvements compared to CCSD(T), which in the
might expect, the standard CCSD(T) approach, employing the ¢ase of the aug-cc-pVTZ basis set produces a 17 millihartree
Dzn-adapted ROHF reference, fails too, producing a well- hymp if we subtract the CCSD(T) energyRit ¢ = 3R from
pronounced unphysical hump at the intermediate valug&-af  the CCSD(T) energy at the maximum on the corresponding
(Figure 1). Consequently, the CCSD(T) energies display a potential energy curve defining the hump. As shown in Table
strongly nonvariational behavior at IarggFF separations. 2 and Figure 1, the CR-CCSD(T) and CCSR(@)ethods reduce
At Rer = 3R, the CCSD(T) energy is already 41.834 {he |arge negative errors in the CCSD(T) energies at larger
m|II|hartree_ below the corresponding full Cl energy when the 5),es ofRe_¢ to smaller positive errors. For example, the large
6-31G basis set is employed. When one uses the aug-cc-pVTZnegative errors in the CCSD(T) results relative to full CRatr
basis set, the CCSD(T) energy is 27.980 millihartree below the — 2R, and R, of —17.510 and—41.834 millihartree, respec-
corresponding MRCI(Q) energy & = 3Re. These large tjvely, obtained with the 6-31G basis set, reduce to much smaller
negative values should be compared to the much smaller Errorgyositive errors of 13.531 and 6.306 millihartree when the CR-
relative to full Cl or MRCI(Q) atRe—r = Re, which are 3.722  ccsp(T) approach is employed and 10.943 and 2.666 milli-
millihartree in the 6-31G case an€ll.102 millihartree in the hartree when the CCSD@ji.e., CR-CC(2,3),A) method is used.
aug-cc-p\/TZ case. These significgnt changes in the error vglues” we attempt to measure the quality of the CR-CCSD(T) and
charac_terlzmg the CCSD(T) energies, the strongly nonvariational CCSD(2) curves by calculating the corresponding approximate
behavior of CCSD(T) at larger F separations, and the pinging energie®. as differences of energies obtained at the
presence of the hump on the CCSD(T) potential energy curve g___ yalues where the CR-CCSD(T) and CCSQ(@ptentials
result in the large NPE values relative to full Cl or MRCI(Q) have maxima associated with tiny humps andRate = Re,

characterizing the CCSD(T) results in the enReer = 0.73Re— then we obtain 4.00 eV for CR-CCSD(T) and 3.73 eV for
3Re region, which are almost 50 millihartree in the 6-31G case CCSD(2), (i.e., CR-CC(2,3),A), when the aug-cc-pVTZ basis
and more than 30 millihartree in the aug-cc-pVTZ case. set is employed. Although these results are not as good as the

As shown in Table 2 and Figure 1, the CR-CCSD(T) and MRCI(Q)/aug-cc-pVTZDe value of 3.35 eV, which is closer
CCSD(2) methods provide considerable improvements in the to the experimentaD, value of 3.41 eV, the CR-CCSD(T) and
poor CCSD and CCSD(T) results fongarticuIarIy at larger CCSD(2) estimates ofD are clearly much better than the



Extension of the Renormalized CC Methods

TABLE 4: Adiabatic A 1A;—X3®B; Splitting in CH , Obtained
with Full Cl and Various CC Approaches and the TZ2P
Basis Set

E(AA;) —
E(X®B1) E(AA,) E(X®B1)

method (hartree) (hartree) (kcal/mol)
full Cl2 —39.066 738  —39.048 984 11.14
CcCcsp —39.063313 —39.043 791 12.25
CCSD» —39.063351 —39.043 791 12.27
CCSD(TY —39.066 192  —39.048 005 11.41
CCSD(Ty —39.066 276  —39.048 005 11.47
CR-CCSD(TY —39.065931 —39.047 475 11.58
CR-CCSD(T) —39.066 011  —39.047 475 11.63
CCSD(2)"d —39.066 015 —39.047 631 11.54
CCSD(2)ed —39.066 097 —39.047 631 11.59
CR-CC(2,3)¢ —39.066 601  —39.048 509 11.35
CR-CC(2,3%® —39.066 699  —39.048 509 11.41

2The basis set, geometries, and full Cl energies were taken from
ref 94. As in ref 94, in all correlated calculations, the lowest occupied
orbital was kept frozen, the highest unoccupied orbital was deleted,
and spherical components of the carbon d orbital were employed. All
calculations were performed at the full Cl equilibrium geometries
computed in ref 94, and they are as follows: faiBX r. = 1.0775 A
andf, = 133.29; for A'A;, re=1.1089 A andd. = 101.89. P Triplet

calculations were performed using the ROHF canonicalization procedure

of Guest and Saundet®. ¢ Triplet calculations were performed using
the Roothaan single matrix ROHF canonicalization procetfdre.

d Defined as the approximate variant A of CR-CC(2,3) described in
the text.® Equivalent to the full variant D of CR-CC(2,3) described in
the text.

CCSD/aug-cc-pVTZ result of 5.07 eV. We realize that we
cannot treat thes®, estimates too rigorously, but we are
mentioning them here to indicate the types of improvements
that the CR-CCSD(T) and CCSD{nethods can offer when
the problem is as challenging a$.F

As in the case of OH, one might think that further improve-
ments in the results forzFat the relatively simple level offered
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CC(2,3),A) results relative to MRCI(Q) & = 2R, reduce

to 13.964 millihartree, when the full CR-CC(2,3) method is
employed. The huge positive error in the CCSD enerdy-at

= 3Re of 85.999 millihartree and the relatively large negative
error in the CCSD(T) energy at the same-F distance of
—27.980 millihartree reduce to a relatively small positive error
of 9.759 millihartree, which is also less than the 25.787 and
12.490 millihartree errors relative to MRCI(Q) obtained with
the CR-CCSD(T) and CCSD@@)(i.e., CR-CC(2,3),A) ap-
proaches, when the full CR-CC(2,3) approach is used. The CR-
CC(2,3) potential energy curves have tiny remanent humps, on
the order of 3 and 1 millihartree, with maxima reache&atr

~ 2R. and 2.R., respectively, when the 6-31G and aug-cc-
pVTZ basis sets are employed, but clearly the CR-CC(2,3)
curves are orders of magnitude better than the corresponding
CCSD(T) potentials, which are characterized by the well-
pronounced humps of about 29 and 17 millihartree, when we
limit ourselves to the FF distances not exceedindgR3(cf.
Figure 1). If we try to estimate the approximate binding energy
resulting from the full CR-CC(2,3) calculations by forming a
difference of the CR-CC(2,3)/aug-cc-pVTZ energy at Rer
value where the CR-CC(2,3)/aug-cc-pVTZ potential has a
maximum associated with the tiny hump (R and the CR-
CC(2,3)/aug-cc-pVTZ energy &_r = Re, then we obtain 3.70
eV. This is an improvement over the CR-CCSD(T) and CR-
CC(2,3),A values of 4.00 and 3.73 eV, respectively, and also
not a bad result, when compared to the MRCI(Q)/aug-cc-pVTZ
De value of 3.35 eV or the experimentAlk value of 3.41 eV,
particularly if we take into consideration the black-box nature
of the CR-CC(2,3) calculations and their relatively low cost
comparable to CCSD(T).

As in the case of the OH radical, the CCSD{#)ethod of
Hirata el al.#* which is represented here by variant A of the
CR-CC(2,3) approach, is more accurate than variant B of CR-

by a single-reference CC theory, where the CCSD energies areCC(2'3_)' which is, up to small details, equivalent to the triples
corrected through the use of noniterative corrections due to correction of the CCSD(2) method of Gwaltney and Head-

triples, are no longer possible. The CR-CC(2,3) results in Table Gordon?”**The CR-CC(2,3),B results are also worse than those

2 and Figure 1 provide information to the contrary. In fact, the
full CR-CC(2,3) approach offers substantial improvements in
the results of the CR-CCSD(T) and CCSD{2glculations at

all values ofRe_g, while correcting the unphysical behavior of
the conventional CCSD(T) approach at largerA-distances.
The MUE values of 15.283 and 14.379 millihartree resulting
from the CR-CCSD(T) and CR-CC(2,3),A calculations with the
6-31G basis set reduce to 8.637 millihartree, when the full CR-
CC(2,3) method is employed. A similar error reduction is

obtained with the CR-CCSD(T) approach. This can be seen by
comparing the CCSD(2) CR-CC(2,3),B, and CR-CCSD(T)
MUE values in Table 2, which are 14.379, 18.129, and 15.283
millihartree, respectively, for the 6-31G basis set, where all
errors are calculated relative to full Cl, and 19.376, 28.411, and
27.375 millihartree, respectively, for the aug-cc-pVTZ basis set,
where all errors are calculated relative to MRCI(Q). Thus, the
sole use of the one-bodybfIH{"“>?) @3 Tcontribution to

the D! _denominator in eq 23, as is done in the CR-CC(2,3),B

abc

observed when we examine the corresponding NPE values. Thecalculations, is not sufficient to improve the CCSR{2y CR-

MUE value of 8.637 millihartree obtained in the simple, single-

reference, ROHF-based CR-CC(2,3) calculations, which neglectthe two-body@l)ﬁfﬂH(ZCCSDM)?‘bCDterms inDk

higher-than-triple excitations, for a system with large nondy-
namical and dynamical correlation effects can actually be

regarded as a reasonably good result. For example, the mucl'{0 obt

more complex MRCI(Q) approach designed to handle large
nondynamical correlation effects gives the MUE value relative
to full Cl of 4.558 millihartree, when the 6-31G basis set is

employed. Although we do not have access to the full Cl data

in the case of the aug-cc-pVTZ basis set and can only rely on

comparisons with the MRCI(Q) energies, which obviously carry
their own errors, the overall improvements in the CCSD,
CCSD(T), CR-CCSD(T), and CCSD@esults offered by the

full CR-CC(2,3) method in the calculations employing the aug-

CCSD(T) results. As in the case of OH, one needs to incorporate
ik abe as is done in
variant C, or two- and three-body term@hIHS )30
and (@3 IHE P\ DT respectively, as in the full variant D,
ain improvements in the results of the CCSh)d CR-
CCSD(T) calculations. Interestingly, the CR-CC(2,3),C results
for F;’ appear to be more accurate than the results of the full
CR-CC(2,3) calculations using variant D, but this is not a general
rule, and it is hard to justify dropping the three-bo@f}‘fﬂ
HE P @0 contribution from the complete form of the
denominatorDi.ﬂf)C given by eq 23. Thus, we continue to favor
the full CR-CC(2,3) approach, represented by variant D, in
which all many-body contributions t@gt,c that result from

cc-pVTZ basis set are similar to those observed in the calcula- considering the diagonal part of the tripteisiples block of the
tions with the 6-31G basis. For example, the 27.375 and 18.976 matrix representingi(¢“SP) are included in the calculations. The

millihartree errors in the CR-CCSD(T) and CCS{(f)e., CR-

full CR-CC(2,3) approach is accurate and robust enough to



11372 J. Phys. Chem. A, Vol. 111, No. 44, 2007 Wioch et al.

justify this. It is interesting, though, to observe the significant a well-balanced and precise assessment of both dynamical and
improvements, compared to variants A and B of CR-CC(2,3), nondynamical correlation effects, and very few electronic
when the two-bodyzq)fj‘fﬂH(ZCCSDﬂcp;'}‘ECDcontributions are in-  structure methods are capable of doing this. For example, even
corporated in th@g'f)c denominator. the highly successful multireference perturbation theory meth-
Last but not least, we would also like to emphasize once again 48 including the widely used CASPT2 approach, give large

that, unlike CR-CCSD(T) and CCSD2r CR-CC(2,3),B, the (~30%) errors in the results for the sing+€tti_plet gap in

full CR-CC(2,3) approach is capable of offering improvements methylene (see, e.g., refs 24 and 25). The genuine multireference
over CCSD(T) or providing the results of the CCSD(T) quality methodslof thesl\/IRCI and MR%QC_:ggype provide excellent results
in the equilibrium region, where CCSD(T) works well. This for the A'/A;—XB; gap in CH, but the question is if we

can be clearly seen by examining the results fptirFTabIe 2 can o_btaln reasonable results for the same gap _when we apply
For example, the full CR-CC(2,3) approach reduces the 0.905, the single-reference CR-CC(2,3) approach, using the ROHF
3.722, and 7.037 millihartree errorsit_r = 0.75R,, Ro, and reference for the 381 state and the RHF reference for th@A&
1.25R,, respectively, obtained in the CCSD(T)/6-31G calcula- state. As in the previous subsection, we are particularly

tions, to 0.414, 2.139, ad 5.787 millihartree, respectively. The INtérested in answering the question of whether the CR-
analogous errors resulting from the CR-CCSD(T) and CC(2,3) approach examined in this work can improve the results

CCSD(2) (i.e., CR-CC(2,3),A) calculations with the 6-31G ©f the CCSD(T), CR-CCSD(T), and CCSDfHalculations.
basis set are visibly larger (1.279, 5.288, and 11.229 millihartree, The results of the CCSD, CCSD(T), CR-CCSD(T),
respectively, when the CR-CCSD(T) approach is used, and CCSD(2} (i.e., CR-CC(2,3),A), and CR-CC(2,3) calculations
1.134, 4.889, and 10.584 millihartree, when the CCSp(2) for the X®B; and A'A; states and the adiabatic energy gap
method is employed). Variant B of CR-CC(2,3), which is between them using the same DZP-type basis sets and
equivalent to the triples correction of the CCSD(2) theory geometries as used in the well-known benchmark study by
developed in refs 37 and 39, is even less accurate. In theBauschlicher and Tayld¥, who provided the exact, full Cl
case of the aug-cc-pVTZ basis set, the differences betweenresults, are listed in Table 3. It is immediately obvious from
CCSD(T) and MRCI(Q) energies &—r = 0.7FR., Re, and this table that the full CR-CC(2,3) approach provides the best
1.25R. are—4.190,—1.102, and 3.173 millihartree, respectively, results when compared to the CCSD and other noniterative
and full CR-CC(2,3) gives-4.412,—1.660, and 4.261 milli- triples methods, reducing the 0.88, 0.32, 0.44, and 0.41 kcal/
hartree for the analogous energy differences with MRCI(Q), mol errors relative to full Cl in the CCSD, CCSD(T), CR-
which shows that the quality of the CR-CC(2,3) and CCSD(T) CCSD(T), and CCSD(?) (i.e., CR-CC(2,3),A) values of
data in the equilibrium region of{Fis more or less the same. the A'A;—X3B; gap in methylene to 0.21 kcal/mol. The
(We have to keep in mind that MRCI(Q) is not the exact theory 2.149, 0.367, 0.516, and 0.469 millihartree errors in the CCSD,
and carries its own errors, which, based on the results obtainedCCSD(T), CR-CCSD(T), and CCSD¢jesults for the easier,
with the 6-31G basis set, can easily be on the order of 1 largely single-reference3; state reduce te-0.001 millihartree
millihartree.) We can conclude this subsection by stating that when the full CR-CC(2,3) method is employed. The 3.544,
the CR-CC(2,3) method provides the best overall description 0.873, 1.213, and 1.125 millihartree errors in the CCSD,
of the potential energy curve of Fwhen compared with other ~ CCSD(T), CR-CCSD(T), and CCSDgJesults for the more
noniterative triples single-reference CC approximations that have challenging and more multideterminantal4 state reduce to
similar computer costs and ease of use. As in the case of bond0-333 millihartree, when the full CR-CC(2,3) method is used.
breaking in |, which proceeds on the singlet potential energy Thus, the CR-CC(2,3) approach provides improvements both
curve and which we studied in our earlier CR-CC(2,3) Wirk8 in the total energies of the38; and A'A; electronic states and
the open-shell variant of full CR-CC(2,3) employing the spin- in the difference t_)etween them, offering a weII-b_aIanced and
and symmetry-adapted ROHF reference provides an accuratedccurate description that can only compete with the most
description of the equilibrium region of the challenging F  accurate MRCI and MRCC wofk®3%or with the calcula-
system, which can compete with that offered by the conventional lons using the expensive single-reference full CCSDT
CCSD(T) approach, while providing substantial improvements method employing the UHF reference, which gives 12.09 kcal/

in the CCSD(T), CR-CCSD(T), and CCSD{2sults at larger mol for the A'A;—X3B; gap in methylené&® Interestingly,
internuclear separations oﬁF our CR-CC(2,3) result for the singtetriplet gap in CH of

B. Singlet—Triplet Splittings in CH 5, HHeH, and (HFH) . 12.18 kcal/mol, which compares rather well with the full CI

. - . : value of 11.97 kcal/mol, is more accurate than the results of
The previous subsection dealt with bond breaking on doublet . : . - i
. . ; . - the approximate CCSDT calculations using the iterative
potentials. In this subsection, we deal with another important

class of open-shell problems, namely, with the singf@let CCSDT{n mo_dels, which are considerably more expensive than
gaps in biradical systems. Our first example is the seminal case?! noniterative CR-CC(2,3) approa}ch and give 12:28.33

of the relatively small AA;—X3B; gap in methylene, which kcal/mol (see ref 98 for further details). In analogy to thg OH
has been the subject of controversies between theory and"’md F; cases, variant B O.f the CR-C(;(2,3) approach, which is
experiment (cf., e.g., refs 888 and references therein) and almost the same as th.e triples correction of the CCSD(2) method
which is very sensitive to the quality of the electronic structure ©f "&fS 37 and 39, is slightly less accurate than the CR-CC(2,3).A
calculationg58%-% One of the biggest challenges that one anq CR-CCSD(T) methods and considerably I.ess acqurate than
encounters in determining the!A;—X3B; gap in methylene is varlgnts C and .D of 'Fhe CR'CC.:(Z'?’.) theory, illustrating once
the fact that the B8, ground state is a nondegenerate high- 29ain the bengglcts_ of Incorporating higher-than-one-body com-
spin state, which can be reasonably well-described by single-Ponents Of@g’ijk IHCCSPY@ETin the definition of the de-
reference methods, but the first excitedA) state has a  NominatorDi, eq 23.

significant degree of biradical character and nondynamical The results in Table 4 show that all of the observations about
correlation, which normally requires a genuine multireference the relative performance of various noniterative triples CC
treatment. An accurate determination of the gap between twomethods, including CCSD(T), CR-CCSD(T), CCSDB{2and
electronic states that have such different characteristics requiresull CR-CC(2,3), in calculations of the A ;—X3B; energy gap
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TABLE 5: A 3zj—x12g* Gap for the Linear, Doy-Symmetric HHeH System (in cnt?) Described by the 6-311G(d,p) Basis

Set47156 33 a Function of the H-He DistanceRy_pe (in A

RHF reference

UHF reference

Rine fullCl SCF CCSD CCSD(T) CR-CCSD(T) CCSD{2) CR-CC(2,3) SCF CCSD CCSD(T) QCISD QCISD(T)ca/Col°
1.250 4859 —21285 4224 4938 4746 4731 4845 1947 3994 4549 3943 4519  0.5248
1.500 1168 —34648 630 1433 1105 1072 1166 450 785 902 781 896  0.7416
1.625 544 —39081 113 833 506 471 546 210 335 376 334 374  0.8175
1.750 249 —42406 —77 517 229 197 253 97 144 157 143 156  0.8732
1.875 113 —44900 —124 337 103 77 118 44 62 66 62 66  0.9130
2.000 51 —46790 —117 225 47 27 55 20 27 28 27 28 0.9408
2125 23 —48248 -94 153 22 7 27 9 12 12 12 12 0.9601
2250 10 —49399 —71 104 11 0 13 4 5 5 5 5 09734
2.500 2 —51108 —36 49 3 -2 4 1 1 1 1 1 0.9884
2.750 0 —52340 —18 23 1 ~1 2 0 0 0 0 0 0.9951
3.000 0 —-53298 —9 11 0 ~1 1 0 0 0 0 0  0.9980
5.000 0 —57247 0 0 0 0 0 0 0 0 0 0  1.0000

aDefined as the approximate variant A of CR-CC(2,3) described in thet&quivalent to the full variant D of CR-CC(2,3) described in the
text. ¢ The absolute value of the ratio of the coefficients at the doubly excited (HOMO)ILUMO)? determinant ;) and the RHF ground-state

determinant ¢,) characterizing the full Cl expansion of thel}ig state.

in methylene remain valid when the larger, TZ2P basis set, used Balancing two electronic states of different spatial and spin
in ref 94, is employed. As in the case of the DZP basis set, the symmetries becomes even more challenging when the HHeH

full CR-CC(2,3) approach is more accurate than the CCSD(T),

CR-CCSD(T), and CCSD(2)methods, giving an excellent
result for the singlettriplet gap of 11.3511.41 kcal/mol, where
the full Cl result is 11.14 kcal/mol. The differences between
the CR-CC(2,3) and full CI energies are very small as well,
namely, 39-137 microhartree for the 38, state and 475
microhartree for the AA; state. No other noniterative triples

and (HFH) linear systems are examined. The HHeH and
(HFH)~ systems are model magnetic systems, where two
paramagnetic centers each carrying an unpaired spin, represented
in this case by the terminal hydrogen atoms, are linked via a
diamagnetic bridge constituted by the He (the HHeH case) or
F~ (the (HFH) case) atom®-103 The spins of the two
paramagnetic electrons of the H atoms can be parallel or

CC method can provide equally good results. In particular, the antiparallel, yielding two different spin states, namely, a singlet,

widely used CCSD(T) approach gives the 4&26 microhartree
errors for the XB; state and the 979 microhartree error for the

X1Z, which is a ground state, and a triple%, which is the
first excited state. The gaps between these states, which provide

A'A; state. These are considerably larger errors than thosejnformation about the magnetic exchange coupling constants

obtained with full CR-CC(2,3). Another interesting feature of

J, as functions of the HHe and H-F distancesRy—ne and

CR-CC(2,3) is the remarkable agreement between the full CR- R, . respectively, in theD,,-symmetric linear HHeH and

CC(2,3) energy for the B\; state and the corresponding full

(HFH)~ systems, have been studied in refs 102 and 103 using

CCSDT energy reported in ref 94. The difference between the || C| and a variety of approximate ab initio and density
full CR-CC(2,3) and CCSDT energies for this state is only 267 fynctional theory methods (see also ref 101). These studies show
m|Cr0hartree. The ana|OgOUS dlﬁel’ence betWeen the CCSD(T)that, not Surprisingly’ the majorlty Of e|ectr0nlc structure

and the CCSDT energies of 771 microhartree is clearly much methods, including the widely used density functional theory

higher, confirming the earlier observatiéfi$® that, unlike

CCSD(T), the CR-CC(2,3) energies are always very close to

the corresponding full CCSDT energies.

and QCISD(T) approaches, have severe problems with describ-
ing the A32u+—X12;r gaps in the HHeH and (HFH)systems
and their dependencies on the correspondirgHd and H-F

The results in Table 4 also show that the method used to distances, which should smoothly approach zero as these

obtain the canonical ROHF orbitals has virtually no effect on
the CR-CC(2,3) energies for the3B; state. The Roothaan
canonicalization of ROHF3 which is a default in GAMESS,
and the GuestSaunders canonicalization schetteused in
ref 94, give the full CR-CC(2,3) energies of théB state that

distances approach.
In analogy to methylene, balancing and accurately describing

the electron correlation effects in théﬂg and A3 states of
the HHeH and (HFH) systems is a major challenge to many

differ by as little as 98 microhartree. Part of this 98 microhartree Methods. What is even more challenging here is the fact that
difference must be due to freezing the core and dropping the Unlike methylene, which is a relatively weak biradical, both

virtual orbitals in the CR-CC(2,3) calculations. Indeed, the

HHeH and (HFH) systems are strong biradicals, particularly

difference between the underlying CCSD energies obtained with in the region of largeRy—ne andRy-r distances. This can be

the Roothaan and GuesBaunders canonicalization schemes

seen in Tables 5 and 6, which show the absolute values of the

is 38 microhartree. The CCSD energies are invariant with respect/atios szthe coefficients at the doubly excited (HOMOy
to orbital rotations, but only when none of the orbitals is dropped (LUMO)? determinant¢,) and the RHF ground-state determi-

from the correlated calculations. The tiny change in the CR-

CC(2,3) energy for the 38, state translates into the very small,

nant €o) characterizing the full Cl expansions of thelzg
wave functions of the HHeH (Table 5) and (HFH)Table 6)

0.06 kcal/mol, difference between the CR-CC(2,3) values of Systems as functions of the relev&at-re andRy—r coordinates.

the A'A;—X3B; gap obtained with the Roothaan and Guest

As in the classic case of the;iholecule, the symmetry of the

Saunders canonicalization procedures. All of this shows the HOMO in the HHeH and (HFH) systems isyg, the symmetry
robustness of the CR-CC(2,3) theory, which is not only very of the LUMO is g, and the ratio of the full ClI expansion
accurate but also virtually insensitive to the way the canonical coefficients at the (HOMG)— (LUMO)?2 and RHF configura-
ROHF orbitals are obtained. We will return to the issue of the tions, c,/co, characterizing the )Eg state is equivalent to the

impact of the ROHF canonicalization procedure on the CR-

CC(2,3) energies in section llIC.

full Cl value of theT, cluster amplitude corresponding to the
(HOMO)? — (LUMO)? double excitation. (The corresponding
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TABLE 6: A3L/— X12+ Gap for the Linear, Doy-Symmetric (HFH)~ System (in cn1!) Described by the 6-31G(d,p) Basis
Sef47-149 a5 a Function of the H-F Distance Ryy_r (inA

RHF reference

UHF reference

Rir fulCl SCF  CCSD CCSD(T) CR-CCSD(T) CCSD{) CR-CC(2,3) SCF CCSD CCSD(T) |cicol®
1500 9525 —7169 7320 9468 8916 8886 9355 3024 7398 8418  0.3768
1.625 7008 —12006 4372 7066 6319 6279 6834 1641 4981 5776  0.4274
1.750 4911 —16708 1838 5179 4169 4117 4752 718 3156 3693  0.4846
1.875 3304 —21135 —172 3902 2553 2482 3183 186 1913 2244 0.5458
2.000 2147 —25229 —1656 3212 1444 1345 2087  —67 1122 1323 0.6082
2125 1353 -—28970 —2668 3023 758 615 1370 —151 638 766 0.6698
2.250 827 —32363 —3282 3225 393 182 916  —150 350 438 0.7292
2.375 488 —35424 —3572 3714 259 —54 628 -118 182 247  0.7858
2500 277 —38172 —3605 4394 280 -171 435 -81 88 137 0.8392
3.000 17 —46460 —2369 7370 943 —230 43 -8 1 10  1.0174
4.000 0 —53986 —230 8899 1741 —34 -33 0 0 0 11727

a Defined as the approximate variant A of CR-CC(2,3) described in thet&xuivalent to the full variant D of CR-CC(2,3) described in the
text. ¢ The absolute value of the ratio of the coefficients at the doubly excited (HOMO)LUMO)? determinant ;) and the RHF ground-state

determinant ¢, characterizing the full Cl expansion of thel}ig state.

TABLE 7: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
Xlz+ State of the Linear Dop-Symmetric HHeH System Described by the 6-311G(d,p) Basis $&t!%6as a Function of the H-He

Distance Ry e (in A)a

RHF reference UHF reference

Riwe full Cl SCF  CCSD CCSD(T) CR-CCSD(T) CCSDg) CR-CC(2,3) SCF CCSD CCSD(T) QCISD QCISD(T)
1.250 —3.831731 156.305 3.083 —0.316 0.558 0.626 0.072 49534 4125 1455 4352 1501
1.500 —3.857318 196.930 2.546 —1.185 0.311 0.462 0.015 36.623 1.836 1234 1.852  1.262
1.625 —3.866631 213.259 2.025 —1.302 0.189 0.347  —0.005 34.001 1.013 0.782 1016  0.790
1.750 —3.873695 226.367 1.524 —1.212 0.103 0.247  —0.015 32569 0.521 0432 0521  0.434
1.875 —3.878850 236.642 1.104 —1.014 0.050 0169  —0.019 31780 0.257 0.220 0257  0.220
2.000 —3.882507 244.662 0.780 —0.791 0.020 0.112  —0.018 31.337 0.124 0.107 0124  0.107
2.125 —3.885048 250.982 0.543 —0.589 0.005 0.073  —0.016 31.084 0.060 0.051 0059  0.051
2.250 —3.886787 256.049 0.375 —0.426  —0.001 0.047 —-0.014  30.936 0.029 0.024 0029  0.024
2.500 —3.888750 263.669 0.177 —0.212  —0.004 0.020 —-0.009  30.795 0.007 0.005 0.007  0.005
2.750 —3.889612 269.222 0.084 —0.102  —0.002 0.008 —0.005 30.739 0.002 0.001 0.002  0.001
3.000 —3.889974 273.558 0.041 —0.049  —0.001 0.004 —-0.003  30.713 0.001 0.000 0.001  0.000
5000 —3.890192 291.514 0.001 —0.001 0.000 0.000 0.000  30.677 0.000 0.000  0.000  0.000

aThe full Cl energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full Cl values.
b Defined as the approximate variant A of CR-CC(2,3) described in thet&xfuivalent to the full variant D of CR-CC(2,3) described in the text.

T1 amplitude vanishes because the HOMO and the LUMO have CC electronic energies of the !X and A3 states as
different symmetries.) In analogy to the bare $ystem, the functions of the relevant HHe and H-F distances are shown
absolute values of this amplitude are small in the weakly in Tables 7 and 8 for the HHeH system and Tables 9 and 10
biradical region of small HH distances, but they become large, for the (HFH) system. It is clear from these tables that the
approaching values around 1.0, when the-HH distance basic CCSD approximation is not sufficient to provide an
becomes large and thelxjF state gains a strongly biradical accurate description, which means that one needs to go beyond
character. In other words, the,/co| ratio provides us with a  the CCSD level and include the effects of triply excited clusters.
measure of the degree of the biradical character in the HHeH Indeed, as shown in Table 5, Bt-1e = 1.25 A, the error in
and (HFH) systems. As indicated by theJ/co| values in Tables  the CCSD result for the 3, — X12+ gap in the HHeH system
5 and 6, which vary between 0.52 and 1.00, wRany. varies is 635 cm! or 13.1%, and the RHF/ROHF-based CCSD
between 1.25 and 5.0 A in HHeH, and between 0.38 and 1.17,approach behaves erratically when we increase the value of
whenRy_r varies between 1.5 and 4.0 A in (HFHYthe HHeH Ru-He, Such that the triplet state goes below the singlet state in
and (HFH) systems have a significant biradical character the 1.75 A< Ry—ne < 3.0 A region, which is a qualitatively
already at the relatively short+He and H-F distances, while incorrect result. The problem of state reversal is particularly
becoming essentially pure biradicals when these distancesdramatic in theRy-ne = 1.75-2.25 A region, where, for
exceed 2.5 A. Because of the significant biradical nature of the example, the positive values of théy — XlZ;r gap atRy_re
HHeH and (HFH) systems at almost all HHe and H-F = 1.75, 2.0, and 2.25 A, which in the full CI calculations are
distances shown in Tables 5 and 6, th%’ZZ\ xlzg gaps in 249, 51, and 10 cnt, become—77, —117, and—71 cnt?,
these systems are already relatively small and sensitive to therespectively, when the ROHF/RHF-based CCSD method is
electron correlation treatment used in the calculations of the employed. One might think that the use of the UHF rather than
X12;,r and A% states in the regions of shorterfle and RHF/ROHF references in the CCSD calculations helps, but this
H—F distances, while rapidly approaching zeroRas e and is not the case. As shown in Table 5, the UHF-based CCSD
R+ become large, as the full Cl results presented in Tables 5 calculations make the & — Xlz+ gap positive in the entire
and 6 clearly indicate. Ry-ne region, but errors in the UHF based CCSD results for
The sensitivity of the results for the?’BU x12+ gaps in the this gap are as large as 865 thor 17.8% aRy_ne = 1.25 A,
HHeH and (HFH) systems to the way that the electron 209 cnT!or 38.4% aRy_ne = 1.625 A, and 24 cmt or 47.1%
correlation effects are treated can be seen by analyzing the datat Ry—ne = 2.0 A. The frequently used UHF-based QCISD
shown in Tables 5 and 6. The corresponding full Cl and various approach provides similarly large errors.
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TABLE 8: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
ALl State of the Linear D..,-Symmetric HHeH System Described by the 6-311G(d,p) Basis $&t!%6as a Function of the H-He

Distance Ryt (in A)2

RHF reference

UHF reference

Rine fulCl  SCF CCSD CCSD(T) CR-CCSD(T) CCSD{) CR-CC(2,3) SCF CCSD CCSD(T) QCISD QCISD(T)

1.250 —3.809590 37.185 0.190  0.041 0.042 0.042 0.008  36.265 0.183 0042 0.176  0.039
1.500 —3.851994 33.738 0.092  0.021 0.021 0.021 0.005  33.348 0.090 0021  0.087  0.020
1.625 —3.864150 32.713 0.061  0.014 0.014 0.014 0.004  32.477 0.060 0014 0.058  0.013
1.750 —3.872559 32.013 0.039  0.009 0.009 0.009 0.003  31.875 0.039 0009  0.037  0.009
1.875 —3.878335 31.547 0.025  0.006 0.006 0.006 0.002  31.468 0.024 0006 0.024  0.005
2.000 —3.882275 31.242 0.015  0.004 0.004 0.004 0.001  31.197 0.015 0004 0.015  0.003
2.125 —3.884944 31.046 0.010  0.002 0.002 0.002 0.001  31.021 0.010 0002 0.009  0.002
2.250 —3.886740 30.922 0.006  0.001 0.001 0.001 0.001  30.908 0.006 0001  0.006  0.001
2.500 —3.888741 30.793 0.003  0.001 0.001 0.001 0.000  30.789 0.003 0001  0.002  0.001
2.750 —3.889610 30.739 0.001  0.000 0.000 0.000 0.000  30.738 0.001 0.000  0.001  0.000
3.000 —3.889974 30.713 0.001  0.000 0.000 0.000 0.000 30713 0.001 0.000  0.001  0.000
5.000 —3.890192 30.677 0.000  0.000 0.000 0.000 0.000  30.677 0.000 0.000  0.000  0.000

aThe full Cl energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full Cl values.

b Defined as to the approximate variant A of CR-CC(2,3) described in thetExjuivalent to the full variant D of CR-CC(2,3) described in the

text.

The results in Table 6 show that the performance of the CCSD more erratic at larger HF distances than the corresponding

approach in the calculations for the (HFHjystem is even more
erratic. The errors in the RHF/ROHF- and UHF-based CCSD

CCSD calculations, and the errors in the calculaté A-
Xlig gaps for the HHeH and (HFH)systems with both the

calculations are extremely large, and the RHF/ROHF-based restricted and the unrestricted references are too large to be

CCSD values of the #;—X!3; gap, which should be
positive for allRy—g values, become very negative in the 1.875
A < Ry = 4.0 A region. Indeed, errors in the RHF/ROHF-
based CCSD results increase from 2205 €or 23.1% aRy—¢

= 1.5 Ato0 4109 cm? or 496.9% aRy_r = 2.25 A and remain
large for the remaining HF distances. The positive values of
the A’ —X13,; gap atRy-¢ = 2.0, 2.25, and 2.5 A, which in
the full CI calculatlons are 2147, 827, and 277 ¢ibecome
—1656,—3282, and—3605 cnt?, respectively, when the ROHF/
RHF-based CCSD method is employed. As in the HHeH case,
the UHF-based CCSD approach makes tHEA-X!S] gap
positive at all H-F distances, but the problem of large errors
relative to full Cl remains. This can be illustrated by the 2127
cm~1or 22.3%, 1025 cmt or 47.7%, and 189 cni or 68.2%
errors in the UHF-based CCSD results for th&SA-X'S]
gap atRyq—¢ = 1.5, 2.0, and 2.5 A, respectively. Clearly, one
needs to include the effects of triply excited clusters to improve
the poor results of the CCSD calculations for th&EA-X15;
gaps in the HHeH and (HFH)systems. The CCSD approach
is incapable of providing reasonabléEE{—Xlzg gaps, par-
ticularly for the (HFH) system, because it fails to balance the
X12 and A3, states, describing the 3| state more ac-
curately than the correspondlng‘*}% state. This can be seen
by |nspect|ng the errors in the CCSD energies of tHE;Xand
A32 states, particularly in the (HFH)case. In the case of
(HFH)‘ the errors in describing thelx+ state in theRy—r =
1.5-3.0 A region range between 12. 346 and 20.546 millihartree,
whereas the errors in describing théE‘A state in the same

acceptable in accurate studies. The fact that tﬁE;Xstate
obtained in the CCSD(T) calculations remains a ground state
at all H—He and H-F distances examined in Tables 80 is

an improvement compared to CCSD but only to some extent,
because, for example, the RHF-based CCSD(T) method com-
pletely fails for the )@2; state of the (HFH) system at larger
H—F distances, artificially lowering its energy, so that the
x1zg state becomes the ground state, as it should, but for
entirely unphysical reasons. For example, as shown in Tables
9 and 10, the signed errors in the RHF-based CCSD(T) energy
of the X12+ state and the ROHF-based CCSD(T) energy of the
A32 state atRy—r = 4.0 A, where both states are practically
degenerate are40.115 and 0.434 millihartree, respectively.
The large,~40 millihartree, lowering of the energy of the
Xlig state atRy_r = 4.0 A by the RHF-based CCSD(T)
approach and, in general, the large negative errors relative to
full Cl obtained with the RHF-based CCSD(T) method in the
Ry-r = 2.25 A region, which exceed, in absolute value, 10
millihartree, are a consequence of an inability of this approach
to describe singlet biradicals, for which the triples (T) correction
of the restricted CCSD(T) always becomes too negative. This
artificial energy lowering helps to reverse the incorrect ordering
of the XIT; and A’S] states of (HFH) observed in the
RHF/ROHF based CCSD calculations in tRg_r > 1.875 A
region, but errors in the Ej X12g gap calculated with the
CCSD(T) approach employing restricted references in this region
are huge, ranging from 598 cthor 18.1% aiRy_r = 1.875 A

to 1065 cnt or 49.6% aRy—r = 2.0 A, 4117 cm’ or 1486.3%

region range between 1.476 and 2.628 millihartree. The fact at Ri—¢ = 2.5 A, and 8899 cmt at Ry_r = 4.0 A, where the

that CCSD is so much less accurate for thE X state is a

A3E;—X1= " gap should be numerically 0. We do not observe

consequence of the multireference nature of this state, whichanything like this in the HHeH case, where the CCSD(T)

requires at least two determinants (the RHF and the (HOMO)
— (LUMO)? configurations) to obtain a reasonable zero-order
description, particularly at largd®y—¢ values. The AZ+ state

is largely dominated by the triplet ROHF conflguratlon for all

approach employing restricted references is practically exact at
large H-He distances (Tables 7 and 8), because tHF;+
state of the HHeH system at large value$gaf e is equwalent

to the significantly stretched Hmolecule and the He atom,

H—F separations and, as such, is easier to describe by the singlewhich are both described exactly at the CCSD and CCSD(T)

reference CC methods, including CCSD.

The inclusion of triples through the CCSD(T) approach
improves the situation but only to some extent. The RHF/ROHF-
based CCSD(T) calculations for the (HFH3ystem are even

levels. There are, however, other problems with the CCSD(T)
results for the HHeH system. For example the relatively small,
78 et or 1.6%, error in the AX — X12 gap obtained with
the RHF/ROHF-based CCSD(T) approaclRe,LHe =125A
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TABLE 9: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the

Xl)::+ State of the Linear, Do,-Symmetric (HFH)~ System Described by the 6-31G(d,p) Basis 3ét 149 as a Function of the H-F
Distance Ry_¢ (in A)a

RHF reference UHF reference

Ry-r full Cl SCF CCSD CCSD(T) CR-CCSD(T) CCSDg) CR-CC(2,3) SCF CCSD CCSD(T)
1.500 —100.589392 277.056 12.674 0.827 3.578 3.471 0.919 226.127 12.240 5.580
1.625 —100.584704 285.951 14.501 0.330 3.951 3.881 0.967 219.120 11.667 6.165
1.750 —100.577669 296.141 16.351 —0.594 4.199 4,178 0.927 212.251 10.319 6.116
1.875 —100.570151 307.260 18.045 —2.071 4.243 4.291 0.768 206.070 8.554 5.408
2.000 —100.563055 318.849 19.398 —4.177 4.027 4,185 0.491 200.817 6.789 4.354
2.125 —100.556686 330.443 20.261 —-6.914 3.535 3.876 0.143 196.486 5.276 3.292
2.250 —100.551083 341.671 20.546 —10.225 2.790 3.432 —0.192 192.950 4.089 2.405
2.375 —100.546222 352.284 20.224 —14.003 1.841 2.944 —0.432 190.056 3.208 1.739
2.500 —100.542059 362.150 19.328 —18.084 0.755 2.500 —0.524 187.679 2.578 1.274
3.000 —100.531336 393.748 12.346 —32.964 —3.573 1.558 0.060 181.950 1.579 0.568
4,000 —100.526513 425.698 2.518 —40.115 —7.388 0.585 0.321 179.720 1.472 0.433

aThe full Cl energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full Cl values.
b Defined as the approximate variant A of CR-CC(2,3) described in thet&xfuivalent to the full variant D of CR-CC(2,3) described in the text.

TABLE 10: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the

AL State of the Linear, Doy-Symmetric (HFH)~ System Described by the 6-31G(d,p) Basis 3ét 14 as a Function of the H-F
Distance Ry_r (in A)2

RHF reference UHF reference

Ry full Cl SCF CCSD CCSD(T) CR-CCSD(T) CCSDg) CR-CC(2,3) SCF CCSD CCsD(T)

1.500 —100.545993 200.994 2.628 0.569 0.803 0.559 0.143 196.505 2.547 0.537
1.625 —100.552773 199.318 2.492 0.595 0.810 0.561 0.175 194.668 2.430 0.549
1.750 —100.555291 197.638 2.349 0.624 0.816 0.557 0.202 193.145 2.320 0.564
1.875 —100.555097 195.908 2.206 0.652 0.821 0.546 0.216 191.865 2.216 0.580
2.000 —100.553271 194.114 2.068 0.677 0.823 0.531 0.218 190.730 2.117 0.598
2.125 —100.550520 192.280 1.940 0.694 0.820 0.512 0.219 189.633 2.017 0.616
2.250 —100.547315 190.446 1.824 0.699 0.811 0.492 0.213 188.498 1.914 0.630
2.375 —100.543996 188.656 1.722 0.692 0.793 0.473 0.202 187.293 1.812 0.638
2,500 —100.540796 186.962 1.637 0.672 0.769 0.457 0.193 186.047 1.717 0.634
3.000 —100.531257 181.982 1.476 0.537 0.642 0.430 0.178 181.834 1.503 0.534
4,000 —100.526513 179.722 1.472 0.434 0.547 0.431 0.169 179.720 1.473 0.434

aThe full Cl energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full Cl values.
b Defined as the approximate variant A of CR-CC(2,3) described in thet&xuivalent to the full variant D of CR-CC(2,3) described in the text.

increases to 265 cm or 22.7% atRy—ne = 1.5 A, 289 cm! 1323 cn1l, respectively, i.e., values that are much too low,
or 53.1% atRy—pe = 1.625 A, 268 cm? or 107.6% atRy_pe whereas the CCSD(T) calculations employing restricted refer-
= 1.75 A, and 174 cmt or 341.2% atR4—ne = 2.0 A. These  ences give 225 and 3212 cfy respectively, i.e., values that
errors indicate that the decay of thé%§ — X12+ gap resulting are much too high. When we look at the gap values at shorter
from the CCSD(T) calculations employing restncted references H—He and H-F distances, we learn, for example, that the UHF-
with the H-He distance is much too slow compared to full Cl. based CCSD(T) value of the3& — x12+ gap in the HHeH

For example the RHF/ROHF-based CCSD(T) value of the system calculated &;-pe = 1.25 A of 4549 cmtis not nearly
A3Z X12 gap atRy—pe = 2. 5 A of 49 cn1lis considerably as accurate as the value obtained in the RHF/ROHF-based
Iarger than the corresponding full CI value of 2 cmnThe CCSD(T) calculations, which give 4938 cf (The full CI
CCSD(T) values of the ﬁf X12 gap in the HHeH system result is 4859 cmt.) Similarly, the UHF-based CCSD(T) value
decay much faster with the+He d|stance when one uses the of the A3S) X12 gap in the (HFHY system aRq—r = 1.5 A
UHF reference in the calculations instead of the RHF and ROHF of 8418 cml is not nearly as accurate as the result of the
references, but then the decay becomes too fast due to mixingCCSD(T) calculations employing restricted references, which
of singlet and triplet contributions in the spin-contaminated is 9468 cntl. (The full CI result is 9525 cmt.) As shown in
UHF-based CCSD(T) calculations, and the results obtained atTable 5, the UHF-based QCISD(T) results are very similar to
short H-He distances are not as good as those obtained withthose obtained with the UHF-based CCSD(T) approach. In
the CCSD(T) method using restricted, spin-adapted referencesparticular, the QCISD(T)/UHF gap in the HHeH system decays
The same is, in fact, true for the (HFH}ystem, where the  much too fast with the HHe distance and is rather inaccurate
ASZI—Xlzg gap obtained with the UHF-based CCSD(T) at shorter H-He distances, when compared with the corre-
approach decays too fast, compared to full CI, with theFH sponding full Cl data.

distance and where the errors in the UHF-based CCSD(T) results  The above discussion illustrates the considerable challenges

for the A’S; —X1Z gap at small values dR+-¢ are consider-  that the HHeH and (HFH) systems create for the standard
ably Iarger than those obtained in the CCSD(T) calculations CCSD and CCSD(T) approaches and their QCISD and

employing restricted references. For example, th& A QCISD(T) analogues. ltis, therefore, interesting to examine how
X12;r gaps obtained in the full Cl calculations for the HHeH effective our CR-CC(2,3) approach is in addressing these
and (HFH) systems at the HHe (the HHeH case) and+H+ challenges, particularly when compared to other noniterative

(the (HFH) case) distances of 2.0 A are 51 and 2147§m triples CC methods, including the CCSD(T) approach discussed
respectively. The UHF-based CCSD(T) calculations give 28 and above and the CR-CCSD(T) and CCSR(&hemes. As shown
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in Tables 5 and 6, the CR-CC(2,3) approach (meaning variant HHeH, so one cannot expect the microhartree-type orlem
D of CR-CC(2,3)) employing restricted references, developed type accuracies observed in the CR-CC(2,3) calculations for
in this work, provides a virtually exact description of the the latter system, but the improvements in the CCSD(T), CR-
A3s —X13, gap for the HHeH system and a highly accurate CCSD(T), and CCSD(2) (i.e., CR-CC(2,3),A) results for
description of the analogous gap in the (HFi8ystem. In fact, =~ (HFH)~ offered by the CR-CC(2,3) approach are equally
no other noniterative triples CC approach that has computer impressive. For example, as shown in Tables 9 and 10, the errors
costs similar to those of CR-CC(2,3), listed in TableslD, is in describing the )KZE,r and A”Z: states atRy_r = 2.0 A,
capable of producing similar accuracies. Indeed, the CR- which are 19.398 and 2.068 millihartree, respectively, when the
CC(2,3) approach gives very small errors in the calculated RHF/ROHF-based CCSD method is employed, 6.789 and 2.117
A32:—x12g gaps for the HHeH system, which are 14@dm  millihartree, respectively, when the UHF-based CCSD approach
for the gap of 4859 cmt at Ry—ne = 1.25 A, 2 cnt? for the is exploited, 4.177 and 0.677 millihartree, respectively, when
gap of 1168 cm! at Ry—ne = 1.5 A, 2 cniL for the gap of 544 the RHF/ROHF-based CCSD(T) approach is used, 4.354 and
cm ! at Ry_pe = 1.625 A, 4 cmi? for the gap of 249 cmt at 0.598 millihartree, respectively, when the UHF-based
Ry-ne = 1.75 A, 4 cnt for the gap of 51 cmt at Ry—pe = 2.0 CCSD(T) method is applied, 4.027 and 0.823 millihartree,
A, and 3 cnt for the gap of 10 cm! at Ry_pe = 2.25 A. This respectively, when the RHF/ROHF-based CR-CCSD(T) ap-
should be compared with the 78, 265, 289, 268, 174, and 94 proach is employed, and 4.185 and 0.531 millihartree,
cm~1 errors, respectively, obtained with the CCSD(T) method respectively, when the RHF/ROHF-based CCSP(R¢., CR-
employing restricted references, 310, 266, 169, 93, 23, and 5CC(2,3),A) method is used, reduce to 0.491 and 0.218 milli-
cm™! errors, respectively, obtained with the UHF-based hartree, respectively, when the CR-CC(2,3) approach exploiting
CCSD(T) approach, 113, 63, 38, 21, 4, and 1 érarrors, the RHF and ROHF references is employed. The errors in the
respectively, obtained with CR-CCSD(T), and 128, 97, 73, 52, CR-CC(2,3) calculations for the 123 state of the (HFH)
24, and 10 cm! errors, respectively, obtained with CCSD{2)  system do not exceed 0.967 millihartree in the erfirer =
defined as CR-CC(2,3),A. 1.5-4.0 A region and are often much smaller than this, which
As is often the case, the CR-CCSD(T) and CCSP(2) is a clear demonstration of the superiority of the CR-CC(2,3)
methods, particularly the former approach, provide considerableapproach over other noniterative triples methods, particularly
improvements in the RHF/ROHF-based CCSD(T) results in the when we realize that the unsigned errors in the CCSD(T)
strongly biradical region (in this case, the-He distances of ~ calculations using restricted references become as large as
1.5 A or more), but they are somewhat less accurate than the40.115 millihartree aRy—¢ = 4.0 A. (The corresponding error
CCSD(T) approach, employing restricted referenceRate in the CR-CC(2,3) result is only 0.321 millihartree.) The UHF-
= 1.25 A, where the degree of the biradical character is not based CCSD(T) approach behaves much better than the RHF-
too large. The RHF/ROHF-based CR-CC(2,3) approach providesbased CCSD(T) method, reducing the large maximum error in
considerable improvements in the CCSD(T) results employing the description of the ng state by the latter method to 6.165
restricted as well as unrestricted references in the entire regionmillihartree, but this is not enough to provide the results that
of Ry—ne Values, not only at larger HHe distances, improving  could compete with those obtained with the CR-CC(2,3)
at the same time the CR-CCSD(T) and CCSh(@)., CR- approach. As shown in Table 9, the CR-CCSD(T) and
CC(2,3),A) results at all HHe distances, particularly at the CCSD(2} methods considerably improve the RHF-based
shorter ones. This can be seen by analyzing tRE;A XS CCSD(T) results for the % state at larger HF distances,
gap values, as discussed above, or by looking at the errors inbut none of these approaches can provide the results of the CR-
the description of the individual 3, and A’S; states shown ~ CC(2,3) quality. Moreover, the CR-CCSD(T) and CCSB(2)
in Tables 7 and 8. For example, the errors in describing the approaches worsen the results of the RHF-based CCSD(T)
xlz;r and A?Ej states aRy_ne = 1.25 A, which are 3.083 and  calculations at shorter HF distancesRy-r < 2.0R), whereas
0.190 millihartree, respectively, when the RHF/ROHF-based the CR-CC(2,3) method provides the results of the CCSD(T)
CCSD method is employed, 4.125 and 0.183 millihartree, Of better quality in this region and a uniformly accurate
respectively, when the UHF-based CCSD approach is exploited,description of the XS, state at allRy—¢ values, which no
0.316 and 0.041 millihartree, respectively, when the RHF/ other CC method considered in this study can offer. Although
ROHF-based CCSD(T) approach is used, 1.455 and 0.042the ASY state is much easier to describe by the single-
millihartree, respectively, when the UHF-based CCSD(T) reference CC approaches, even in this case the CR-CC(2,3)
method is applied, 0.558 and 0.042 millihartree, respectively, results are by far the most accurate ones. Indeed, as shown in
when the RHF/ROHF-based CR-CCSD(T) approach is em- Table 10, the errors in the CR-CC(2,3) results for thﬁ[}A
ployed, and 0.626 and 0.042 millihartree, respectively, when state of (HFH) do not exceed 0.219 millihartree in the entire
the RHF/ROHF-based CCSD¢2jj.e., CR-CC(2,3),A) method  Ry-r = 1.5-4.0 A region. The maximum errors resulting from
is used, reduce to 0.072 and 0.008 millihartree, respectively, the ROHF-based CCSD(T), UHF-based CCSD(T), ROHF-based
when the full CR-CC(2,3) approach exploiting the RHF and CR-CCSD(T), and ROHF-based CCSG{f)e., CR-CC(2,3),A)
ROHF references is employed. As desired, the CR-CC(2,3) calculations are 0.699, 0.638, 0.823, and 0.561 millihartree,
values of the AS; —X'Z; gap for the HHeH system correctly ~ respectively.
approach 0 when the HHe distance becomes large. Although The very good performance of the CR-CC(2,3) approach in
all CC methods shown in Table 5 behave in a similar manner the calculations of the individual lx;f and A3 states of
in the asymptotic region of the HHeH case, none of the other (HFH)~, and, what is particularly important, a well-balanced
CC approaches examined in this work can compete with the description of both states by the CR-CC(2,3) method are
extremely high accuracy that the CR-CC(2,3) approach offers reflected by the accurate values of th&A—X'X gap of the
in the calculations for the ¥, and A’ states and A%, — (HFH)~ system provided by the CR-CC(2,3) approach in the
X12g,r gap of the HHeH system. practically entireRy—r = 1.5-4.0 A region. Indeed, as shown
Much of the above analysis remains valid when the (HFH) in Table 6, the CR-CC(2,3) approach gives the relatively small
system is examined. The (HFH$ystem is more complex than  errors in the calculated %:—XlZ; gaps for the (HFH)
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system, which are 170 cmhfor the gap of 9525 cm' at Ry—r
=1.5A, 174 cm! for the gap of 7008 cmt at Ry—_g = 1.625

A, 159 cntt for the gap of 4911 cmt atRy—r = 1.75 A, 121
cm ! for the gap of 3304 cmt at Ry—r = 1.875 A, 60 cm?

for the gap of 2147 cmt at Ry—g = 2.0 A, 17 cnt? for the gap

of 1353 cnt! at Ry—g = 2.125 A, and 89 cmt for the gap of
827 cntt atRy_r = 2.25 A. This should be compared with the
57, 58, 267, 598, 1065, 1670, and 2398 érerrors, respec-
tively, obtained with the CCSD(T) method employing restricted
references, 1107, 1232, 1219, 1060, 824, 587, and 389 cm
errors, respectively, obtained with the UHF-based CCSD(T)
approach, 609, 689, 743, 751, 703, 596, and 434laemrors,
respectively, obtained with CR-CCSD(T), and 639, 729, 795,
822, 802, 738, and 645 crherrors, respectively, obtained with

tational procedure. As shown below, changes in the CR-
CC(2,3) energies due to different ways of obtaining the
canonical ROHF orbitals are often on the same order as or not
much greater than the tiny changes in the CCSD energies when
core electrons are frozen in post-ROHF calculations.

We have, in fact, already discussed an example illustrating
the above statements in section IlIB, when we analyzed the
performance of the CR-CC(2,3) approach in the calculations
of the triplet ground state of methylene employing the TZ2P
basis set used in ref 94 (Table 4). As shown in Table 4, two
popular canonicalization schemes of RootHaafdefault in
GAMESS) and Guest and Saundépsgive the full CR-
CC(2,3) energies of the3B; state of methylene that differ by
98 microhartree, where the difference between the underlying
CCSD(2) (CR-CC(2,3),A). We can see once again that the CR- cCSD energies due to freezing the core and dropping the
CCSD(T) and CCSD(2) methods, particularly the former pighest-energy virtual orbital in these calculations is 38 micro-
approach, provide considerable improvements in the RHF/ hartree. (Recall that the CCSD energies are invariant with
ROHF-based CCSD(T) results when the-Fdistance becomes  respect to ROHF canonicalization but only when none of the
larger but are less accurate than the CCSD(T) approachorpitals is dropped from the CCSD calculations.) As pointed
employing restricted references in tRa—r < 1.75 A region, oyt in subsection IlIB, this tiny change in the CR-CC(2,3) energy
where the|c,/Co| ratio shown in Table 6 does not exceed 0.5, for the X3B; state caused by using different canonicalization
i.e., when the degree of the biradical character is not too large schemes translates into the 0.06 kcal/mol difference between
yet. The CR-CC(2,3) approach provides the results, which are the CR-CC(2,3) values of the!A;—X3B; gap obtained with

competitive with the results of the RHF/ROHF-based the Roothaan and GuesBaunders procedures for generating
CCSD(T) calculations and much better than the results of the ROHE orbitals.

UHF-based CCSD(T) calculations in tRg-r < 1.75 A region,
while reducing the errors in the results of the CCSD(T)
calculations employing restricted references inRher > 1.75
A region, where the RHF/ROHF-based CCSD(T) method fails
by orders of magnitude. There is a slight increase of errors i

the +RHF/ROHF-based CR-CC(2,3) results for théZj- and DobosH!8 (See the documentation for GAME®%for an
X'Z; gap of (HFH) atRu-¢ = 2.375 and 2.5 A to 139 and  gyerview and information about how to perform these different
157 cnm?, respectively, where the qorre_spondlng full Cl values types of ROHF calculations with GAMESS.) All of these
are 488 and 277 cm, but this is still an overall better  eyamples show similar patterns to those observed in the above
performance than that offered by other noniterative triples CC methylene case, i.e., the insignificant dependencies of the
methods. For example, the RHF/ROHF-based CCSI{3., calculated CR-CC(2,3) energies on the canonicalization proce-
CR-CC(2,3),A) approach gives the 542 and 448 Emrrors,  qyre that are on the order of a few tens of microhartree.
respectively, at these two values Bfi-r. The UHF-based \jethylene represents a small molecular system and a weak
CCSD(T) method, which is expected to perform reasonably well piradical. Let us, therefore, examine the lowest triplet state of
in this region, gives the 242 and 140 cherrors, respectwely.' the larger HSiLO, system, which also is a relatively strong
The RHF/ROHF-based CCSD(T) approach completely fails, piradical investigated earlier by Schmidt ef#The results of

We have tested hundreds of open-shell cases in a similar
manner, examining up to six different ways of performing the
ROHF calculations using the canonicalization approaches of

' Roothaari® McWeeny and DierckseH? Guest and Saun-
M ders!!5 Faegri and Mann&lé Davidsont!” and Binkley, Pople,

giving the 3225 and 4117 crh errors in the calculated A
3, —X1=; gap of the (HFH) system aRy—¢ = 2.375 and 2.5

the CCSD and CR-CC(2,3) calculations for this system, using
the 6-311G(d,p) basis sk¥;156.15%he nuclear geometry of the

A, respectively. We can conclude that the CR-CC(2,3) approach corresponding singlet structure determined with the two-

provides the overall best description of th@ﬁi—xlzg gap of

configurational SCF approach in ref 106, and six different

(HFH)™ at all H—F distances when compared to other single- ROHF canonicalization procedures listed above, are given in
reference CC approximations that have similar computer costSTable 11. As one can see, the differences between the CR-
and that are based on the idea of correcting the CCSD energiesCC(2,3) energies of the lowest triplet state of theSkO,
for the effects of triples via noniterative energy corrections.  biradical do not exceed 35 microhartree in the frozen-core case,
C. Effect of Canonicalization of ROHF Orbitals on the where 12 lowest-energy core orbitals were dropped from the
CR-CC(2,3) EnergiesThe ROHF-based CR-CC(2,3) approach, CC calculations, and 31 microhartree, when all electrons were
as implemented in this work, provides high accuracies in correlated. If we limit ourselves to the popular canonicalization
applications involving radicals, biradicals, and single bond methods of Roothaan and Guest and Saunders, then the
breaking, but, as mentioned in section 1B, the ROHF-based differences between the CR-CC(2,3) energies of the lowest
CR-CC(2,3) energies of open-shell states may display a slighttriplet state of HSi,O, are even smaller, namely, 19 microhar-
dependence on the method of canonicalization of the ROHF tree in the frozen-core case and 14 microhartree when all
orbitals. In this subsection, we demonstrate that changes in theelectrons are correlated. In the all-electron case, the CCSD
full CR-CC(2,3) (i.e., CR-CC(2,3),D) energies due to different energies do not depend on the ROHF canonicalization scheme,
ways of obtaining the ROHF orbitals are on the order of tens but they do depend on it when core orbitals are frozen. The
of microhartree or 0.01 kcal/mol, so that lack of the strict difference between the CCSD energies obtained with the
invariance of the CR-CC(2,3) energies on the method of Roothaan-type and GuesbBaunders-type canonical ROHF
canonicalization of the ROHF orbitals is more of a formal issue orbitals, when 12 lowest-energy core orbitals are frozen in the
than a practical one, particularly that for a given canonicalization CCSD calculations, is 4 microhartree. Thus, changes in the CR-
scheme the CR-CC(2,3) method is a uniquely defined compu- CC(2,3) energies due to different ways of obtaining ROHF
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TABLE 12: Effect of the Method of Canonicalization of the
ROHF Orbitals on the Activation Energies of the C;H, + H

— C,Hs Forward (V]) and Reverse V) Reactions (in
kcal/mol) and the Corresponding Total Electronic Energies
(in hartree) of the C,Hs Product and Transition-State
Species Obtained in the Frozen-Core and All-Electron CCSD
and CR-CC(2,3) Calculations Employing the aug-cc-pVTZ
and aug-cc-pCVTZ Basis Setk'7:151.152

TABLE 11: Effect of the Method of Canonicalization of the
ROHF Orbitals on the CCSD and CR-CC(2,3) Energies (in
hartree) Obtained in the Frozen-Core and All-Electron
Calculations of the Lowest Triplet State of the HSi,O,
Biradical, as Described by the 6-311G(d,p) Basis Sét/:156.159
Using the Geometry of the Corresponding Singlet Structure
Determined with the Two-Configurational SCF Approach6

ROHF
canonicalization frozen—_core all electrons ROHF VfTN,T b
method (12 orbitals) correlated canonicalization CoHs CoHs
CCsD method transition state product
I\R/ID :;ggﬂggiggz :;gggggggiig aug-cc-pVTZ, frozen-core (2 orbitals)
GS ~729.41091552 ~729.69529140 CcCcsb
D 79941091552  —729.69529140 MD —78.92408297 —78.99531306  2.49/44.70
FM —78.92408278 —78.99531036 2.49/44.70
CR-CC(2,3) D —78.92408278 —78.99531036 2.49/44.70
R —729.43012120 —729.71613811 BPD —78.92408278 —78.99531036  2.49/44.70
MD —729.43010820 —729.71612921
GS ~729.43010216  —729.71612421 CR-CC(2,3)
M 72943010216  —729.71612421 R —78.93981497 —79.00793943  2.06/42.75
D 79943011804  —729.71613986 MD —78.93979160 —79.00785969 2.07/42.71
BPD 72943008670  —729.71610896 GS —78.93978279 —79.00784537  2.08/42.71
FM —78.93978279 —79.00784537 2.08/42.71
2R, MD, GS, FM, D, and BPD stand for the canonicalization D —78.93980619 —79.00788043 2.06/42.72
approaches of R_oothaéﬁ, McWeeny and Dierck_seﬁf‘ Guest and BPD —78.93976561 —79.00780692 2.09/42.70
Saunder$!®Faegri and Mann&g Davidsont!” and Binkley, Pople, and aug-cc-pCVTZ, all electron
Dobosht'8 respectively.
_ . CCsD
orbitals are not only very small but also not hugely different R —79.02476229 —79.09599752  2.55/44.70
than changes in the CCSD energies due to freezing core orbitals. MD —79.02476229 —79.09599752  2.55/44.70
This is an important observation, because the majority of CC E‘a :;g-gggggg :;g-ggggg;gg g-ggﬁi-;g
calculations are performed with frozen-core orbitals, where the 70.02476229 —79.09599752 2 55/44.70
resglts will alyvays dgpend on how ROHF orbitals are rotated gpp —79:02476229 _79:09599752 2:55/44:70
during canonicalization. CR-CC(2.3)

The above two examples involve triplet states. Let us, g —70.04135899 —79.10936685 2.12/42.68
therefore, conclude this section by examining the effect of the vD —79.04133112 —79.10929705 2.14/42.65
ROHF canonicalization procedure on the CR-CC(2,3) results GS —79.04132138 —79.10928466 2.14/42.65
for the activation energies of the,d, + H — C,Hs forward EM —;g-gﬂgiéig —;g-iggggggg g-igﬁg-gg
and reversfe reactlgr'zﬁ, which procagedtop Ia IdomtJbIe_t potential 7004130671 —79.10924660 2 15/42.63
energy surface, and the corresponding total electronic energies apHe/DBH24¢ 1.72/41.75

of the GHs product and transition-state species. The results of
the CCSD and CR-CC(2,3) calculations, employing the aug-
cc-pVTZ (the frozgn-corels(iege) and aug-cc-pCvTZ (the all- Saundera!®Faegri and Mann&* Davidsont” and Binkley, Pople, and
electron case) basis sét<;'>*%the nuclear geometries of the  popospiis respectively® The geometries of the s transition state

relevant molecular species taken from ref 105, and the sameand product and the £, reactant are taken from ref 105The RHF-

six canonicalization methods as used in th&kD, case, are based CCSD and CR-CC(2,3) energies of thdeactant needed to
summarized in Table 12. As one can see, the differencescalculate the activation barriers arg8.42822424 ane-78.44327344
between the CR-CC(2,3) energies of thad€product species hartree for the aug-cc-pVTZ frozen-core case a¥8.52901035 and
due to different methods of obtaining the ROHF orbitals do —78.54491349 hartree for the aug-cc-pCVTZ all-electron case. In both

t d 133 microhart in the f d 120cases, the ROHF energy of the H atom-i8.49982118 hartreé€.The
not exceed 1s5 microhartrée In tne frozen-core case an 'empirical activation barriers are taken from the UABH6 subset of the
microhartree in the all-electron case. If we limit ourselves t0 ppH24 database of ref 105.

the popular canonicalization schemes of Roothaan and Guest
and Saunders, then the differences between the corresponding The above analysis indicates that the dependence of the CR-

CR-CC(2,3) energies of the,ls product molecule are 94 CC(2,3) energies on the way of obtaining ROHF orbitals is,
microhartree in the frozen-core case and 82 microhartree in the . S .
for all practical purposes, negligible. Consequently, important

all-electron case. The difference between the CCSD energies . L2 . - .
of the GHs product species obtained in the frozen-core properties, such as the activation energies characterizing chemi-

calculations using the Roothaan-type and Gu&stunders-type cal rt_aaction; proceeding on nonsinglet potential energy surfaces
canonical ROHF orbitals is 15 microhartree. The differences ©Ptained with the ROHF-based CR-CC(2,3) approach, are
between the CR-CC(2,3) energies of thgHCtransition-state  Virtually independent of the ROHF canonicalization procedure.
species due to different methods of obtaining the ROHF orbitals This is shown in Table 12 for the forward and reversél+

are even smaller than those in the case of thidsQproduct H — C,Hs reactions. As one can see, the differences between
molecule. They do not exceed 49 microhartree in the frozen- the CR-CC(2,3) activation energies due to different methods
core case and 52 microhartree in the all-electron case, and ifof obtaining the ROHF orbitals do not exceed 0.03 kcal/mol or
we limit ourselves to only two canonicalization schemes of about 1% for the forward reaction, which is characterized,
Roothaan and Guest and Saunders, then they are 32 and 3&ccording to CR-CC(2,3) calculations, by a barrier of about 2.1
microhartree, respectively. kcal/mol, and 0.05 kcal/mol or about 0.1% for the reverse

aR, MD, GS, FM, D, and BPD stand for the canonicalization
approaches of Roothaal, McWeeny and Diercksel? Guest and
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reaction, which is characterized, according to CR-CC(2,3) of this work has been to show that the complete CR-CC(2,3)
calculations, by a barrier of about 42.7 kcal/mol. approach is more accurate than other noniterative triples CC
The recommended empirical estimates of the activation approximations, which have similar computer costs, including
barriers characterizing the forwar\df*ﬁ and reverse\C) CoHy CCSD(T), CR-CCSD(T), and CCSD)represented in this
+ H — C,Hs reactions, which are part of the DBH24 database work by CR-CC(2,3),A), in calculations involving open-shell
of ref 105, arevfT = 1.72 kcal/mol and\/:r = 41.75 kcal/mol, systems. Thus, we have examined a relatively simple problem
respectively. The CCSD approach employing basis sets of aug-of bond breaking in the OH radical, which is typical of many
cc-p(C)VTZ quality givesvfT ~ 2.5 kcal/mol and\/rT =447 radical studies, where the conventional CCSD(T) approach
kcal/mol. As one can see, the CR-CC(2,3) approach reducesworks reasonably well, and the most challenging case of bond
the ~0.8 kcal/mol or 47% and-3.0 kcal/mol or 7% errors in  breaking in the E ion, where CCSD and CCSD(T) completely
the CCSD results fow] andV! to ~0.3-0.4 kcal/mol or 20% fail. We have studied the classic problem of the singteplet
and 0.9-1.0 kcal/mol or 2%, respectively. This shows that the energy gap in methylene, which is a relatively weak biradical
CR-CC(2,3) method has a potential for becoming a method of system in which the CCSD(T) method, although not the most
choice in the accurate calculations of the activation barriers, in accurate, behaves in a reasonable manner, and much more
addition to being very useful in studies of single bond breaking, challenging problems of the singtetriplet gaps in the linear
reaction pathways involving radicals and biradicals, and singlet HHeH and (HFH) systems, which are model magnetic systems
triplet gaps in biradical or magnetic systems, as shown in the with a significant and rapidly varying degree of biradical
earlier sections of this paper and some of our earlier character, where the CCSD(T) and related QCISD(T) ap-
studies?0:31:33.6668,76.77A more systematic study of the perfor-  proaches employing restricted and unrestricted HartFeek
mance of the CR-CC(2,3) approach in calculations of reaction references face considerable difficulties.
barriers, employing the 24 reaction_s constitutir_lg the DB_H24 In all cases examined in this study, the CR-CC(2,3) approach
database of ref 105 and several different basis sets, will bey,ned out to be the most accurate one. We have demonstrated
published elsewheré? that CR-CC(2,3) eliminates the failures of CCSD(T) in calcula-
tions involving the open-shell systems that display a multiref-
erence character, while being at least as accurate as CCSD(T)
In this study, we have extended the recently formulated CR- in calculations involving nondegenerate open-shell states for
CC(2,3) approacPf 68 in which the suitably designed, size which CCSD(T) is sufficiently good. We have also demonstrated
extensive, renormalized corrections due to triply excited clusters that the full CR-CC(2,3) approach examined in this study
are added to the CCSD energies, to open-shell systems. Afteiimproves the results of the CR-CCSD(T) and CCSBh(2E.,
describing the CR-CC(2,3) method and its most important CR-CC(2,3),A) calculations, which just like CR-CC(2,3) aim
formal and computational characteristics and overviewing the at eliminating the failures of CCSD(T) in situations characterized
key elements of the underlying biorthogonal MMCC thééfy by larger nondynamical correlation effects. This applies to
(cf. refs 75 and 76 for reviews), which leads to a new generation situations where the nondynamical correlation effects are strong,
of the successful CC approximations, such as CR-CC(2,3), weas in the case of the;“F HHeH, and (HFH) systems, and
have discussed the most essential steps that we had to undertakgases where the accurate treatment of dynamical correlations
to develop the highly efficient computer programs that enable through the CC wave function ansatz is sufficient to obtain

us to perform the CR-CC(2,3) calculations for nonsinglet reasonable accuracies, such as the equilibrium region of the OH
electronic ground states. Although in developing our CR- radical or singlettriplet gap in methylene.

CC(2,3) codes for open-shell systems we have not limited
ourselves to any particular form of the high-spin reference state,
the actual programs used in this study have been intimately
interfaced with the ROHF routines from the GAMESS package.
Although we plan to work on extending our present open-shell
CR-CC(2,3) code to UHF references, once the suitable integral
infrastructure for the UHF basis is developed, the use of the
spin- and symmetry-adapted ROHF references in the
CR-CC(2,3) calculations is, in our view, a preferred option,
which has an advantage of eliminating, to a large extent, the
issues of symmetry breaking and spin contamination that enter
the UHF-based CC considerations. As shown in this paper using
a number of open-shell problems as examples and as demon
strated in our earlier workd31,33.6668.76.77\yhere we used the

IV. Summary

A few examples, including the activation energies of thel L

+ H — C,Hs forward and reverse reactions, which proceed on
a doublet potential energy surface, and the corresponding total
electronic energies of the;8s product and transition-state open-
shell species, as well as the lowest-energy triplet states of the
CH; and HSi,O-, biradicals, have been used to demonstrate that
the dependence of the ROHF-based CR-CC(2,3) energies on
the method of canonicalization of the ROHF orbitals is, for all
practical purposes, negligible, typically at the level of tens of
microhartree or 0.01 kcal/mol when activation barriers are
examined. By analyzing the energetics of the forward and
reverse @H, + H — C,Hs reactions, we have shown that the
ROHF-based CR-CC(2,3) approach may become useful in

CR-CC(2,3) method to examine reaction pathways on singlet acpurate calculatipns of Fhe actiyation energies in addition.to

potential energy surfaces, the CR-CC(2,3) method is much moreP€ing suc_cessfu_l in stL_Jdles of smgle_bond breal_<|ng,_ reaction

robust than the conventional CCSD(T) approach when the spin-Pathways involving radicals and biradicals, and singteplet

and symmetry-adapted references of the restricted type aredaPs in biradical/magnetic systems.

employed. The benchmark results involving a few typical open-shell
Further technical details related to our highly efficient, fully ~problems described in this work, combined with the earlier

factorized implementation of the CR-CC(2,3) approach used in studies of closed-shell systeris’!33.6668.76.7clearly indicate

the present study will be provided elsewhé&tén this work, that the recently developed CR-CC(2,3) approximation provides

we have focused on testing the open-shell CR-CC(2,3) codesan excellent alternative to the existing noniterative CC methods

on several typical open-shell problems of varying difficulty, of the CCSD(T) type and that the biorthogonal MMCC

including those where the standard CCSD and CCSD(T) formalism, on which the CR-CC(2,3) method is based, is a

approaches completely break down. One of the main objectivespromising theoretical framework for designing new generations
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of relatively inexpensive and robust single-reference CC meth-
ods that can be used in various areas of chemistry.
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